【题目来源】http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=4937
【个人体会】这个题目刚开始看的时候我以为是树的中心点+最小割。但是最小割那边我很怕会超时,因此一开始就没敢打,后来发现可以使用树形DP在O(N)的级别中解决这个问题,因此思路很明确,首先是求树的中心点,然后是树形DP,总级别也是O(N),可能带点常数,但无关紧要。
【题目解析】思路分为两块,第一块是求树的中心点,有经典的O(N)级别的算法。第二块是树形DP,DP[U]表示的是以U为根的子树中,切断所有叶子节点与根节点的联系,所要付出的那个最大边的代价。因此,对于U和U的某个儿子V,在cost[U,V]和DP(V)中选一个小的,记为min{cost[U,V], DP(V)},最后在所有的min{cost[U,V], DP(V)}中选一个max用来更新DP(U)
【代码如下】
1 #include <iostream> 2 #include <cstdio> 3 #include <climits> 4 #include <cstdlib> 5 #include <cstring> 6 #include <vector> 7 #include <deque> 8 #include <stack> 9 #include <queue> 10 #include <algorithm> 11 12 #define rep(i, x) for (int i = 1; i <= x; ++i) 13 #define rept(i, x) for (int i = 0; i < x; ++i) 14 #define pb push_back 15 #define ppf pop_front 16 #define mp make_pair 17 #define pf push_front 18 #define x first 19 #define y second 20 21 #define FILE_IO 22 #define DEBUG 23 24 using namespace std; 25 26 typedef long long int64; 27 28 const int Max = 10001, MAX = 1e16 + 1; 29 30 struct edge 31 { 32 int v, c, next; 33 int64 w; 34 }E[Max * 2]; 35 36 bool hash[Max]; 37 int N, Cnt, H[Max], Root; 38 int64 Dp[Max], up[Max], down[Max][3]; 39 40 void Clear() 41 { 42 Cnt = 0; 43 memset(H, 0, sizeof(H)); 44 memset(up, 0, sizeof(up)); 45 memset(down, 0, sizeof(down)); 46 } 47 48 int64 Treedp_Dp(int i) 49 { 50 if (Dp[i] != -1) return Dp[i]; 51 int64 t1 = MAX, t2 = 0; 52 bool flag = false; 53 for (int j = H[i], v; j; j = E[j].next) 54 { 55 v = E[j].v; 56 if (!hash[v]) hash[v] = flag = true; 57 else continue; 58 t1 = min(Treedp_Dp(v), E[j].w), t2 = max(t2, t1); 59 } 60 if (!flag) return MAX; 61 Dp[i] = t2; 62 return t2; 63 } 64 65 void Treedp() 66 { 67 memset(Dp, -1, sizeof(Dp)); 68 memset(hash, 0, sizeof(hash)); hash[Root] = true; 69 printf("%lld\n", Treedp_Dp(Root)); 70 } 71 72 void Center_find() 73 { 74 int64 t1 = 0, t2 = MAX; 75 for (int i = 1; i <= N; ++i) 76 { 77 t1 = max(up[i], down[i][1]); 78 if (t1 < t2) t2 = t1, Root = i; 79 } 80 } 81 82 void Center_upFind(int u, int fa, int64 dis) 83 { 84 if (u != fa) 85 { 86 up[u] = up[fa] + dis; 87 int64 tmp = 0; 88 if (down[fa][1] == down[u][1] + dis) tmp = down[fa][2] + dis; 89 else tmp = down[fa][1] + dis; 90 if (tmp > up[u]) up[u] = tmp; 91 } 92 for (int j = H[u], v; j; j = E[j].next) 93 { 94 v = E[j].v; 95 if (hash[v]) continue; 96 hash[v] = true; 97 Center_upFind(v, u, E[j].c); 98 } 99 } 100 101 void Center_downFind(int u) 102 { 103 for (int j = H[u], v; j; j = E[j].next) 104 { 105 v = E[j].v; 106 if (hash[v]) continue; 107 hash[v] = true; 108 Center_downFind(v); 109 if (down[v][1] + E[j].c > down[u][1]) 110 { 111 down[u][2] = down[u][1]; 112 down[u][1] = down[v][1] + E[j].c; 113 } 114 else if (down[v][1] + E[j].c > down[u][2]) down[u][2] = down[v][1] + E[j].c; 115 } 116 } 117 118 void Center() 119 { 120 memset(hash, 0, sizeof(hash)); hash[1] = true; 121 Center_downFind(1); 122 memset(hash, 0, sizeof(hash)); hash[1] = true; 123 Center_upFind(1, 1, 0); 124 Center_find(); 125 } 126 127 inline void edgeAdd(int &x, int &y, int &c, int &w) 128 { 129 E[++ Cnt].next = H[x], H[x] = Cnt, E[Cnt].v = y, E[Cnt].c = c, E[Cnt].w = w; 130 } 131 132 void Init() 133 { 134 for (int i = 1, x, y, c, w; i <= N - 1; ++i) 135 { 136 scanf("%d%d%d%d", &x, &y, &c, &w); 137 edgeAdd(x, y, c, w); 138 edgeAdd(y, x, c, w); 139 } 140 } 141 142 int main() 143 { 144 #ifdef FILE_IO 145 //freopen("test.in", "r", stdin); 146 #endif // FILE_IO 147 while (scanf("%d", &N) != EOF) 148 { 149 Init(); 150 Center(); 151 Treedp(); 152 Clear(); 153 } 154 return 0; 155 }