题目描述
为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动。 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间。玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了。有人提出了扑克牌的一种新的玩法。 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。 如果对一叠6张的扑克牌1 2 3 4 5 6,进行一次洗牌的过程如下图所示: 从图中可以看出经过一次洗牌,序列1 2 3 4 5 6变为4 1 5 2 6 3。当然,再对得到的序列进行一次洗牌,又会变为2 4 6 1 3 5。 游戏是这样的,如果给定长度为N的一叠扑克牌,并且牌面大小从1开始连续增加到N(不考虑花色),对这样的一叠扑克牌,进行M次洗牌。最先说出经过洗牌后的扑克牌序列中第L张扑克牌的牌面大小是多少的科学家得胜。小联想赢取游戏的胜利,你能帮助他吗?
输入
有三个用空格间隔的整数,分别表示N,M,L (其中0< N ≤ 10 ^ 10 ,0 ≤ M ≤ 10^ 10,且N为偶数)。
输出
单行输出指定的扑克牌的牌面大小。
样例输入
6 2 3
样例输出
6
题解
欧拉定理
由题意,第i张牌洗牌后的位置是2i mod (n+1)。
那么原题就是要求$2^m·xequiv l (mod (n+1))$的最小正整数解 。
直接使用乘法逆元将$2^m$除过去即可。
注意到$2^m$与$n+1$一定是互质的,因此由欧拉定理$a^{varphi(p)}equiv 1 (mod p)$,可以求得$2^m$的逆元为$(2^m)^{varphi(n+1)-1}$。
求一下欧拉函数并使用快速幂求解即可。
当然好像还有更快但是更麻烦的EXgcd算法
由于两个大数相乘会爆long long,因此还要使用快(man)速乘
#include <cstdio> #include <algorithm> using namespace std; typedef long long ll; ll mul(ll x , ll y , ll mod) { ll ans = 0; while(y) { if(y & 1) ans = (ans + x) % mod; x = (x + x) % mod , y >>= 1; } return ans; } ll pow(ll x , ll y , ll mod) { ll ans = 1; while(y) { if(y & 1) ans = mul(ans , x , mod); x = mul(x , x , mod) , y >>= 1; } return ans; } ll phi(ll x) { ll ans = x , i; for(i = 2 ; i * i <= x ; i ++ ) { if(x % i == 0) { ans = ans / i * (i - 1); while(x % i == 0) x /= i; } } if(x > 1) ans = ans / x * (x - 1); return ans; } int main() { ll n , m , l; scanf("%lld%lld%lld" , &n , &m , &l); printf("%lld " , mul(pow(pow(2 , m , n + 1) , phi(n + 1) - 1 , n + 1) , l , n + 1)); return 0; }