zoukankan      html  css  js  c++  java
  • 【bzoj4930】棋盘 费用流

    题目描述

    给定一个n×n的棋盘,棋盘上每个位置要么为空要么为障碍。定义棋盘上两个位置(x,y),(u,v)能互相攻击当前仅
    当满足以下两个条件:
    1:x=u或y=v
    2:对于(x,y)与(u,v)之间的所有位置,均不是障碍。
    现在有q个询问,每个询问给定ki,要求从棋盘中选出ki个空位置来放棋子,问最少互相能攻击到的棋子对数是多少?

    输入

    第一行一个整数n。
    接下来输入一个n×n的字符矩阵,一个位置若为.,则表示这是一个空位置,若为#,则为障碍。
    第n+2行输入一个整数q代表询问个数。
    接下来q行,每行一个整数k,代表要放的棋子个数。
    n ≤ 50, q ≤ 10000, k ≤ 棋盘中空位置数量

    输出

    输出共q行,每行代表对应询问的最少的互相能攻击到的棋子对数。

    样例输入

    4
    ..#.
    ####
    ..#.
    ..#. 
    1
    7

    样例输出

    2


    题解

    费用流, bzoj4554 的强化版

    按照那道题的思路,把相互影响的行和列的部分拿出来,同一个点的行部分和列部分之间连边。

    不过这道题是固定棋子数,问最小的影响的棋子对数。

    考虑,一个行或列的部分,如果存在k个棋子,那么相互影响的棋子对数为$frac{k(k-1)}2$对(两个棋子之间隔着其它棋子也算相互影响)。

    所以我们可以使用拆边法来解决,从S到行的部分、从列的部分到T连d条边,其中d为该部分的位置数。第i条边的费用为$frac{i(i-1)}2-frac{(i-1)(i-2)}2=i-1$。

    然后跑费用流。在此过程中,由于每条增广路的容量必定为1,所以相当于每次多放置了一个棋子。这样我们可以只跑一次EK费用流即可预处理出所有答案,然后再$O(1)$回答。

    时间有点长但可以过,可以动态加边来提高效率(这里懒了没有写)

    #include <cstdio>
    #include <cstring>
    #include <queue>
    #define N 6010
    #define M 1200010
    #define inf 0x3f3f3f3f
    using namespace std;
    queue<int> q;
    int map[60][60] , bx[60][60] , tx , by[60][60] , ty , sx[N] , sy[N] , head[N] , to[M] , val[M] , cost[M] , next[M] , cnt = 1 , s , t , dis[N] , from[N] , pre[N] , ans[N];
    char str[60];
    void add(int x , int y , int v , int c)
    {
    	to[++cnt] = y , val[cnt] = v , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
    	to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
    }
    bool spfa()
    {
    	int x , i;
    	memset(from , -1 , sizeof(from));
    	memset(dis,  0x3f , sizeof(dis));
    	dis[s] = 0 , q.push(s);
    	while(!q.empty())
    	{
    		x = q.front() , q.pop();
    		for(i = head[x] ; i ; i = next[i])
    			if(val[i] && dis[to[i]] > dis[x] + cost[i])
    				dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
    	}
    	return ~from[t];
    }
    void mincost()
    {
    	int k = 0 , i;
    	while(spfa())
    	{
    		k ++ , ans[k] = ans[k - 1] + dis[t];
    		for(i = t ; i != s ; i = from[i]) val[pre[i]] -- , val[pre[i] ^ 1] ++ ;
    	}
    }
    int main()
    {
    	int n , q , i , j , x;
    	scanf("%d" , &n);
    	for(i = 1 ; i <= n ; i ++ )
    	{
    		scanf("%s" , str + 1);
    		for(j = 1 ; j <= n ; j ++ ) map[i][j] = (str[j] == '#');
    	}
    	for(i = 1 ; i <= n ; i ++ )
    	{
    		tx ++ ;
    		for(j = 1 ; j <= n ; j ++ ) bx[i][j] = tx , sx[tx] ++ , tx += map[i][j];
    	}
    	for(j = 1 ; j <= n ; j ++ )
    	{
    		ty ++ ;
    		for(i = 1 ; i <= n ; i ++ ) by[i][j] = ty , sy[ty] ++ , ty += map[i][j];
    	}
    	s = 0 , t = tx + ty + 1;
    	for(i = 1 ; i <= tx ; i ++ )
    		for(j = 0 ; j < sx[i] ; j ++ )
    			add(s , i , 1 , j);
    	for(i = 1 ; i <= ty ; i ++ )
    		for(j = 0 ; j < sy[i] ; j ++ )
    			add(i + tx , t , 1 , j);
    	for(i = 1 ; i <= n ; i ++ )
    		for(j = 1 ; j <= n ; j ++ )
    			if(!map[i][j])
    				add(bx[i][j] , by[i][j] + tx , 1 , 0);
    	mincost();
    	scanf("%d" , &q);
    	while(q -- ) scanf("%d" , &x) , printf("%d
    " , ans[x]);
    	return 0;
    }
    

     

  • 相关阅读:
    HDU 4975 A simple Gaussian elimination problem.
    HDU 4888 Redraw Beautiful Drawings
    ZOJ 3795 Grouping
    HDU 4971 A simple brute force problem.
    ERROR: unable to bind listening socket for address ’127
    linux命令
    有关nginx的配置文件 之server
    CentOS LNMP环境搭建 各版本
    PHP扩展安装方法
    Nginx如何配置虚拟主机?
  • 原文地址:https://www.cnblogs.com/GXZlegend/p/7112612.html
Copyright © 2011-2022 走看看