题目描述
输入
有多组测试数据。
输出
样例输入
3
2 3
4 5
6 7
样例输出
1
6
960
题解
莫比乌斯反演
$prodlimits_{i=1}^nprodlimits_{j=1}^mf(gcd(i,j))\=prodlimits_{d=1}^{min(n,m)}(prodlimits_{i=1}^nprodlimits_{j=1}^m[gcd(i,j)=d]·f(d))\=prodlimits_{d=1}^{min(n,m)}f(d)^{sumlimits_{i=1}^nsumlimits_{j=1}^m[gcd(i,j)=d]}\=prodlimits_{d=1}^{min(n,m)}f(d)^{sumlimits_{i=1}^{lfloorfrac nd floor}sumlimits_{j=1}^{lfloor frac md floor}[gcd(i,j)=1]}\=prodlimits_{d=1}^{min(n,m)}f(d)^{sumlimits_{i=1}^{lfloorfrac nd floor}sumlimits_{j=1}^{lfloor frac md floor}sumlimits_{k|i&k&j}mu(d)}\=prodlimits_{d=1}^{min(n,m)}f(d)^{sumlimits_{k=1}^{min(lfloorfrac nd floor,lfloorfrac md floor)}mu(k)lfloorfrac n{dk} floorlfloorfrac m{dk} floor}$
到了这一步我们可以选择分块套分块,不过显然时间复杂度不足以应对多组询问。
继续令$D=dk$,可以得到:
$prodlimits_{d=1}^{min(n,m)}f(d)^{sumlimits_{k=1}^{min(lfloorfrac nd floor,lfloorfrac md floor)}mu(k)lfloorfrac n{dk} floorlfloorfrac m{dk} floor}\=prodlimits_{D=1}^{min(n,m)}(prodlimits_{d|D}f(d)^{mu(frac Dd)})^{lfloorfrac nD floorlfloorfrac mD floor}\=prodlimits_{D=1}^{min(n,m)}(t(D))^{lfloorfrac nD floorlfloorfrac mD floor}\(t(D)=prodlimits_{d|D}f(d)^{mu(frac Dd)})$
于是线性筛出$mu$,递推出f,预处理出f的逆元,进而使用$O(nln n)$的时间预处理出t数组。这里有一个小技巧:先枚举$frac Dd$,当它的$mu$值等于0时不作任何处理。亲测可以有效减少时间。
然后预处理出t数组之后分块处理询问即可。
时间复杂度为O(跑得过)$O(nln n+Tsqrt n)$,实际上跑了37s。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1000010
using namespace std;
typedef long long ll;
const int k = 1000000 , mod = 1000000007;
int mu[N] , prime[N] , tot;
ll f[N] , inv[N] , t[N] , sum[N];
bool np[N];
ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int main()
{
int i , j , T , n , m;
ll ans;
sum[0] = t[1] = f[1] = inv[1] = mu[1] = 1;
for(i = 2 ; i <= k ; i ++ )
{
t[i] = 1 , f[i] = (f[i - 1] + f[i - 2]) % mod , inv[i] = pow(f[i] , mod - 2) % mod;
if(!np[i]) mu[i] = -1 , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= k ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else mu[i * prime[j]] = -mu[i];
}
}
for(j = 1 ; j <= k ; j ++ )
{
if(!mu[j]) continue;
for(i = 1 ; i * j <= k ; i ++ )
{
if(mu[j] == 1) t[i * j] = t[i * j] * f[i] % mod;
else t[i * j] = t[i * j] * inv[i] % mod;
}
}
for(i = 1 ; i <= k ; i ++ ) sum[i] = sum[i - 1] * t[i] % mod;
scanf("%d" , &T);
while(T -- )
{
scanf("%d%d" , &n , &m) , ans = 1;
for(i = 1 ; i <= n && i <= m ; i = j + 1)
j = min(n / (n / i) , m / (m / i)) , ans = ans * pow(sum[j] * pow(sum[i - 1] , mod - 2) % mod , (ll)(n / i) * (m / i)) % mod;
printf("%lld
" , ans);
}
return 0;
}