zoukankan      html  css  js  c++  java
  • 【luogu3768】简单的数学题 欧拉函数(欧拉反演)+杜教筛

    题目描述

    给出 $n$ 和 $p$ ,求 $(sumlimits_{i=1}^nsumlimits_{j=1}^nijgcd(i,j))mod p$ 。

    $nle 10^{10}$ 。


    题解

    欧拉函数(欧拉反演)+杜教筛

    推式子:

    $$egin{align}&sumlimits_{i=1}^nsumlimits_{j=1}^nijgcd(i,j)\=&sumlimits_{i=1}^nsumlimits_{j=1}^nijsumlimits_{d|gcd(i,j)}varphi(d)\=&sumlimits_{i=1}^nsumlimits_{j=1}^nijsumlimits_{d|i,d|j}varphi(d)\=&sumlimits_{d=1}^nvarphi(d)sumlimits_{i=1}^{lfloorfrac nd floor}idsumlimits_{j=1}^{lfloorfrac nd floor}jd\=&sumlimits_{d=1}^nd^2varphi(d)(sumlimits_{i=1}^{lfloorfrac nd floor}i)^2\=&sumlimits_{d=1}^nd^2varphi(d)(frac{lfloorfrac nd floor(lfloorfrac nd floor+1)}2)^2end{align}$$

    对 $lfloorfrac nd floor$ 分块处理,只需要求出 $f(n)=n^2varphi(n)$ 的前缀和即可。

    显然这是一个积性函数,然而 $n$ 有 $10^{10}$ 之大,不能线性筛。

    考虑杜教筛。设 $g(n)=n^2$ ,那么有:

    $$egin{align}&(f·g)(n)\=&sumlimits_{d|n}f(d)g(frac nd)\=&sumlimits_{d|n}d^2varphi(d)·(frac nd)^2\=&n^2sumlimits_{d|n}varphi(d)\=&n^3end{align}$$

    所以:

    $$egin{align}&sumlimits_{i=1}^ni^3\=&sumlimits_{i=1}^n(f·g)(i)\=&sumlimits_{i=1}^nsumlimits_{d|i}f(d)·g(frac id)\=&sumlimits_{i=1}^nsumlimits_{d|i}f(frac id)g(d)\=&sumlimits_{d=1}^ng(d)sumlimits_{i=1}^{lfloorfrac nd floor}f(i)\=&sumlimits_{d=1}^nd^2S(lfloorfrac nd floor)end{align}$$

    故有:

    $$S(n)=sumlimits_{i=1}^ni^3-sumlimits_{i=2}^ni^2S(lfloorfrac nd floor)$$

    线性筛预处理出 $n^{frac 23}$ 以内的 $S(i)$ ,对超过 $n^{frac 23}$ 的部分进行杜教筛即可。

    可能需要用到的公式:

    $$sumlimits_{i=1}^ni^2=frac{n(n+1)(2n+1)}6\sumlimits_{i=1}^ni^3=frac{n^2(n+1)^2}4$$

    时间复杂度 $O(n^{frac 23})$ ,这里偷懒使用map,复杂度多一个 $log$ 。

    #include <map>
    #include <cstdio>
    #define N 10000010
    using namespace std;
    typedef long long ll;
    const int m = 10000000;
    map<ll , ll> mp;
    int phi[N] , prime[N] , tot , np[N];
    ll sum[N] , p , inv4 , inv6;
    void init()
    {
        int i , j;
        phi[1] = 1;
        for(i = 2 ; i <= m ; i ++ )
        {
            if(!np[i]) phi[i] = i - 1 , prime[++tot] = i;
            for(j = 1 ; j <= tot && i * prime[j] <= m ; j ++ )
            {
                np[i * prime[j]] = 1;
                if(i % prime[j] == 0)
                {
                    phi[i * prime[j]] = phi[i] * prime[j];
                    break;
                }
                else phi[i * prime[j]] = phi[i] * phi[prime[j]];
            }
        }
        for(i = 1 ; i <= m ; i ++ ) sum[i] = (sum[i - 1] + 1ll * phi[i] * i % p * i) % p;
        inv4 = (p + 1) / 2;
        if(p % 3 == 1) inv6 = (2 * p + 1) / 3;
        else inv6 = (p + 1) / 3;
        inv6 = inv6 * inv4 % p , inv4 = inv4 * inv4 % p;
    }
    ll calc2(ll n) {n %= p; return n * (n + 1) % p * (2 * n + 1) % p * inv6 % p;}
    ll calc3(ll n) {n %= p; return n * n % p * (n + 1) % p * (n + 1) % p * inv4 % p;}
    ll solve(ll n)
    {
        if(n <= m) return sum[n];
        if(mp.find(n) != mp.end()) return mp[n];
        ll i , last , ans = calc3(n);
        for(i = 2 ; i <= n ; i = last + 1) last = n / (n / i) , ans = (ans - (calc2(last) - calc2(i - 1) + p) * solve(n / i) % p + p) % p;
        return mp[n] = ans;
    }
    int main()
    {
        ll n , i , last , ans = 0;
        scanf("%lld%lld" , &p , &n);
        init();
        for(i = 1 ; i <= n ; i = last + 1)
            last = n / (n / i) , ans = (ans + (solve(last) - solve(i - 1) + p) * calc3(n / i)) % p;
        printf("%lld
    " , ans);
        return 0;
    }
    
  • 相关阅读:
    tlb、tlh和tli文件的关系
    String算法
    Reverse A String by STL string
    windows内存管理复习(加深了理解得很!)
    [转载]有关DLL中New和外部Delete以以及跨DLL传递对象的若干问题
    顺势工作时间
    C++箴言:绝不在构造或析构期调用虚函数
    inline函数复习
    从编译器的角度更加深入考虑封装的使用
    复习:constructor和destructor的compiler实现
  • 原文地址:https://www.cnblogs.com/GXZlegend/p/8722399.html
Copyright © 2011-2022 走看看