zoukankan      html  css  js  c++  java
  • hdu 2680 Choose the best route

    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=2680   

    Choose the best route

    Description

    One day , Kiki wants to visit one of her friends. As she is liable to carsickness , she wants to arrive at her friend’s home as soon as possible . Now give you a map of the city’s traffic route, and the stations which are near Kiki’s home so that she can take. You may suppose Kiki can change the bus at any station. Please find out the least time Kiki needs to spend. To make it easy, if the city have n bus stations ,the stations will been expressed as an integer 1,2,3…n.

    Input

    There are several test cases. 
    Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
    Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
    Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.

    Output

    The output contains one line for each data set : the least time Kiki needs to spend ,if it’s impossible to find such a route ,just output “-1”.

    Sample Input

    5 8 5
    1 2 2
    1 5 3
    1 3 4
    2 4 7
    2 5 6
    2 3 5
    3 5 1
    4 5 1
    2
    2 3
    4 3 4
    1 2 3
    1 3 4
    2 3 2
    1
    1

    Sample Output

    1
    -1

    最短路。。

     1 #include<algorithm>
     2 #include<iostream>
     3 #include<cstdlib>
     4 #include<cstring>
     5 #include<cstdio>
     6 #include<vector>
     7 #include<queue>
     8 #include<map>
     9 using std::min;
    10 using std::cin;
    11 using std::cout;
    12 using std::endl;
    13 using std::find;
    14 using std::sort;
    15 using std::pair;
    16 using std::vector;
    17 using std::multimap;
    18 using std::priority_queue;
    19 #define pb(e) push_back(e)
    20 #define sz(c) (int)(c).size()
    21 #define mp(a, b) make_pair(a, b)
    22 #define all(c) (c).begin(), (c).end()
    23 #define iter(c) decltype((c).begin())
    24 #define cls(arr,val) memset(arr,val,sizeof(arr))
    25 #define cpresent(c, e) (find(all(c), (e)) != (c).end())
    26 #define rep(i, n) for (int i = 0; i < (int)(n); i++)
    27 #define tr(c, i) for (iter(c) i = (c).begin(); i != (c).end(); ++i)
    28 const int N = 20010;
    29 const int INF = 0x3f3f3f3f;
    30 typedef unsigned long long ull;
    31 struct P {
    32     int w, v;
    33     P(int i = 0, int j = 0) :w(i), v(j) {}
    34     inline bool operator<(const P &a) const {
    35         return w > a.w;
    36     }
    37 };
    38 struct Node { int to, w, next; };
    39 struct Dijkstra {
    40     Node G[N];
    41     int tot, dist[N], head[N];
    42     inline void init() {
    43         tot = 0, cls(dist, 0x3f), cls(head, -1);
    44     }
    45     inline void add_edge(int u, int v, int w) {
    46         G[tot] = { v, w, head[u] }; head[u] = tot++;
    47     }
    48     inline void built(int m) {
    49         int u, v, w;
    50         while (m--) {
    51             scanf("%d %d %d", &u, &v, &w);
    52             add_edge(v, u, w);
    53         }
    54     }
    55     inline void dijkstra(int s) {
    56         priority_queue<P> q;
    57         q.push(P(0, s));
    58         dist[s] = 0;
    59         while (!q.empty()) {
    60             P t = q.top(); q.pop();
    61             int u = t.v;
    62             if (dist[u] < t.w) continue;
    63             for (int i = head[u]; ~i; i = G[i].next) {
    64                 int &w = dist[G[i].to];
    65                 if (w > dist[u] + G[i].w) {
    66                     w = dist[u] + G[i].w;
    67                     q.push(P(w, G[i].to));
    68                 }
    69             }
    70         }
    71     }
    72     inline void work(int s) {
    73         dijkstra(s);
    74         int k, v, ans = INF;
    75         scanf("%d", &k);
    76         while (k--) {
    77             scanf("%d", &v);
    78             ans = min(ans, dist[v]);
    79         }
    80         printf("%d
    ", ans == INF ? -1 : ans);
    81     }
    82 }go;
    83 int main() {
    84 #ifdef LOCAL
    85     freopen("in.txt", "r", stdin);
    86     freopen("out.txt", "w+", stdout);
    87 #endif
    88     int n, m, s;
    89     while (~scanf("%d %d %d", &n, &m, &s)) {
    90         go.init();
    91         go.built(m);
    92         go.work(s);
    93     }
    94     return 0;
    95 }
    View Code
    By: GadyPu 博客地址:http://www.cnblogs.com/GadyPu/ 转载请说明
  • 相关阅读:
    单表查询
    阻塞非阻塞同步异步&异步回调
    基于协程的TCP并发编程
    协程
    死锁与递归锁
    线程池和进程池
    GIL全局解释器锁
    数据库——多表关系
    常用数据类型与约束
    Python基础(目录)
  • 原文地址:https://www.cnblogs.com/GadyPu/p/4655642.html
Copyright © 2011-2022 走看看