zoukankan      html  css  js  c++  java
  • poj 2560 Freckles

    题目连接

    http://poj.org/problem?id=2560  

    Freckles

    Description

    In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad's back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley's engagement falls through. 
    Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.

    Input

    The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.

    Output

    Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.

    Sample Input

    3
    1.0 1.0
    2.0 2.0
    2.0 4.0

    Sample Output

    3.41
    $n$个点用$Prim$求最小生成树,开始用的$double$类型$\%lf$控制精度$g++$不停地wa后改为$float,\%f$过了/(ㄒoㄒ)/~~

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<cmath>
    #include<set>
    using std::set;
    using std::pair;
    using std::swap;
    using std::multiset;
    using std::priority_queue;
    #define pb(e) push_back(e)
    #define sz(c) (int)(c).size()
    #define mp(a, b) make_pair(a, b)
    #define all(c) (c).begin(), (c).end()
    #define iter(c) __typeof((c).begin())
    #define cls(arr, val) memset(arr, val, sizeof(arr))
    #define cpresent(c, e) (find(all(c), (e)) != (c).end())
    #define rep(i, n) for(int i = 0; i < (int)n; i++)
    #define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
    const int N = 110;
    const int INF = 0x3f3f3f3f;
    typedef unsigned long long ull;
    struct P {
    	float x, y;
    	P(float i = 0.0, float j = 0.0) :x(i), y(j) {}
    	inline float calc(const P &k) const {
    		return sqrt((x - k.x) * (x - k.x) + (y - k.y) * (y - k.y));
    	}
    }A[N];
    struct PDI {
    	int v;
    	float s;
    	PDI(int i = 0, float j = 0.0) :v(i), s(j) {}
    	inline bool operator<(const PDI &k) const {
    		return s > k.s;
    	}
    };
    struct Prim {
    	bool vis[N];
    	int tot, head[N];
    	float mincost[N];
    	struct edge { int to; float w; int next; }G[(N * N) << 1];
    	inline void init(int n) {
    		tot = 0;
    		rep(i, n + 1) {
    			head[i] = -1;
    			vis[i] = false;
    			mincost[i] = INF;
    		}
    	}
    	inline void add_edge(int u, int v, float w) {
    		G[tot] = (edge){ v, w, head[u] }; head[u] = tot++;
    	}
    	inline void built(int n) {
    		rep(i, n) scanf("%f %f", &A[i].x, &A[i].y);
    		for (int i = 0; i < n; i++) {
    			for (int j = 0; j < n; j++) {
    				if (i == j) continue;
    				add_edge(i + 1, j + 1, A[i].calc(A[j]));
    			}
    		}
    	}
    	inline void prim(int s = 1) {
    		float ans = 0.0;
    		priority_queue<PDI> q;
    		q.push(PDI(s));
    		for (int i = head[s]; ~i; i = G[i].next) {
    			edge &e = G[i];
    			q.push(PDI(e.to, mincost[e.to] = e.w));
    		}
    		vis[s] = true;
    		while (!q.empty()) {
    			PDI t = q.top(); q.pop();
    			int u = t.v;
    			if (vis[u]) continue;
    			vis[u] = true;
    			ans += mincost[u];
    			for (int i = head[u]; ~i; i = G[i].next) {
    				edge &e = G[i];
    				if (mincost[e.to] > e.w && !vis[e.to]) {
    					q.push(PDI(e.to, mincost[e.to] = e.w));
    				}
    			}
    		}
    		printf("%.2f
    ", ans);
    	}
    	inline void solve(int n) {
    		init(n), built(n), prim();
    	}
    }go;
    int main() {
    #ifdef LOCAL
    	freopen("in.txt", "r", stdin);
    	freopen("out.txt", "w+", stdout);
    #endif
    	int n;
    	while (~scanf("%d", &n)) {
    		go.solve(n);
    	}
    	return 0;
    }
  • 相关阅读:
    WebBrowser一点心得,如果在Javascript和Winform代码之间实现双向通信
    PHP
    ASP.NET的路由系统:根据路由规则生成URL
    数据库的范式模型
    P2P编程
    MS CRM 2011的自定义与开发(12)——表单脚本扩展开发(4)
    Html.RenderPartial和Html.Partial在Razor视图中的区别
    如何在本地安装 DotNetNuke 6
    ASP.NET的路由系统:路由映射
    ASP.NET Web API: 宿主(Hosting)
  • 原文地址:https://www.cnblogs.com/GadyPu/p/4780795.html
Copyright © 2011-2022 走看看