zoukankan      html  css  js  c++  java
  • hdu 3836 Equivalent Sets

    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=3836  

    Equivalent Sets

    Description

    To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
    You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
    Now you want to know the minimum steps needed to get the problem proved.

    Input

    The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
    Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.

    Output

    For each case, output a single integer: the minimum steps needed.

    Sample Input

    4 0
    3 2
    1 2
    1 3

    Sample Output

    4
    3

    题目大意:给你一张有向图要求最少加多少条边时该图变成强连通图。
    Tarjan缩点。。

    #include<bits/stdc++.h>
    using namespace std;
    const int N = 20100;
    struct Tarjan_scc {
    	stack<int> s;
    	bool instack[N];
    	struct edge { int to, next; }G[N * 3];
    	int idx, scc, tot, in[N], out[N], dfn[N], low[N], head[N], sccnum[N];
    	inline void init(int n) {
    		idx = scc = tot = 0;
    		while (!s.empty()) s.pop();
    		for (int i = 0; i < n + 2; i++) {
    			head[i] = -1;
    			instack[i] = false;
    			in[i] = out[i] = dfn[i] = low[i] = sccnum[i] = 0;
    		}
    	}
    	inline void add_edge(int u, int v) {
    		G[tot].to = v, G[tot].next = head[u], head[u] = tot++;
    	}
    	inline void built(int m) {
    		int u, v;
    		while (m--) {
    			scanf("%d %d", &u, &v);
    			add_edge(u, v);
    		}
    	}
    	inline void tarjan(int u) {
    		dfn[u] = low[u] = ++idx;
    		instack[u] = true;
    		s.push(u);
    		for (int i = head[u]; ~i; i = G[i].next) {
    			int &v = G[i].to;
    			if (!dfn[v]) {
    				tarjan(v);
    				low[u] = min(low[u], low[v]);
    			} else if (instack[v] && dfn[v] < low[u]) {
    				low[u] = dfn[v];
    			}
    		}
    		if (dfn[u] == low[u]) {
    			int v = 0;
    			scc++;
    			do {
    				v = s.top(); s.pop();
    				instack[v] = false;
    				sccnum[v] = scc;
    			} while (u != v);
    		}
    	}
    	inline void solve(int n, int m) {
    		init(n);
    		built(m);
    		for (int i = 1; i <= n; i++) {
    			if (!dfn[i]) tarjan(i);
    		}
    		int x1 = 0, x2 = 0;
    		for (int u = 1; u <= n; u++) {
    			for (int i = head[u]; ~i; i = G[i].next) {
    				int v = G[i].to;
    				if (sccnum[u] != sccnum[v]) {
    					in[sccnum[v]]++;
    					out[sccnum[u]]++;
    				}
    			}
    		}
    		for (int i = 1; i <= scc; i++) {
    			if (!in[i]) x1++;
    			if (!out[i]) x2++;
    		}
    		printf("%d
    ", 1 == scc ? 0 : max(x1, x2));
    	}
    }go;
    int main() {
    #ifdef LOCAL
    	freopen("in.txt", "r", stdin);
    	freopen("out.txt", "w+", stdout);
    #endif
    	int n, m;
    	while (~scanf("%d %d", &n, &m)) {
    		go.solve(n, m);
    	}
    	return 0;
    }
  • 相关阅读:
    题解 P4999 【烦人的数学作业】
    题解 P2657 【[SCOI2009] windy 数】
    题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】
    乘法逆元
    浅谈二维前缀和
    浅谈位运算
    浅谈 Lucas 定理
    浅谈 exgcd
    【洛谷P1754 球迷购票问题】题解
    RPA机器人工厂化时代下,艺赛旗要做什么样的“四新”产品
  • 原文地址:https://www.cnblogs.com/GadyPu/p/5003447.html
Copyright © 2011-2022 走看看