zoukankan      html  css  js  c++  java
  • OpenCV使用二维特征点(Features2D)和单映射(Homography)寻找已知物体

    使用二维特征点(Features2D)和单映射(Homography)寻找已知物体

    目标

    在本教程中我们将涉及以下内容:

    理论

    代码

    这个教程的源代码如下所示。你还可以从 以下链接下载到源代码

    #include <stdio.h>
    #include <iostream>
    #include "opencv2/core/core.hpp"
    #include "opencv2/features2d/features2d.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include "opencv2/calib3d/calib3d.hpp"
    
    using namespace cv;
    
    void readme();
    
    /** @function main */
    int main( int argc, char** argv )
    {
      if( argc != 3 )
      { readme(); return -1; }
    
      Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
      Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
    
      if( !img_object.data || !img_scene.data )
      { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
    
      //-- Step 1: Detect the keypoints using SURF Detector
      int minHessian = 400;
    
      SurfFeatureDetector detector( minHessian );
    
      std::vector<KeyPoint> keypoints_object, keypoints_scene;
    
      detector.detect( img_object, keypoints_object );
      detector.detect( img_scene, keypoints_scene );
    
      //-- Step 2: Calculate descriptors (feature vectors)
      SurfDescriptorExtractor extractor;
    
      Mat descriptors_object, descriptors_scene;
    
      extractor.compute( img_object, keypoints_object, descriptors_object );
      extractor.compute( img_scene, keypoints_scene, descriptors_scene );
    
      //-- Step 3: Matching descriptor vectors using FLANN matcher
      FlannBasedMatcher matcher;
      std::vector< DMatch > matches;
      matcher.match( descriptors_object, descriptors_scene, matches );
    
      double max_dist = 0; double min_dist = 100;
    
      //-- Quick calculation of max and min distances between keypoints
      for( int i = 0; i < descriptors_object.rows; i++ )
      { double dist = matches[i].distance;
        if( dist < min_dist ) min_dist = dist;
        if( dist > max_dist ) max_dist = dist;
      }
    
      printf("-- Max dist : %f 
    ", max_dist );
      printf("-- Min dist : %f 
    ", min_dist );
    
      //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
      std::vector< DMatch > good_matches;
    
      for( int i = 0; i < descriptors_object.rows; i++ )
      { if( matches[i].distance < 3*min_dist )
         { good_matches.push_back( matches[i]); }
      }
    
      Mat img_matches;
      drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
                   good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                   vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
    
      //-- Localize the object
      std::vector<Point2f> obj;
      std::vector<Point2f> scene;
    
      for( int i = 0; i < good_matches.size(); i++ )
      {
        //-- Get the keypoints from the good matches
        obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
        scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
      }
    
      Mat H = findHomography( obj, scene, CV_RANSAC );
    
      //-- Get the corners from the image_1 ( the object to be "detected" )
      std::vector<Point2f> obj_corners(4);
      obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
      obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
      std::vector<Point2f> scene_corners(4);
    
      perspectiveTransform( obj_corners, scene_corners, H);
    
      //-- Draw lines between the corners (the mapped object in the scene - image_2 )
      line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
      line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
      line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
      line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
    
      //-- Show detected matches
      imshow( "Good Matches & Object detection", img_matches );
    
      waitKey(0);
      return 0;
      }
    
      /** @function readme */
      void readme()
      { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
    

    解释

    结果

    1. 检测到的目标结果 (用绿色标记出来的部分)

      ../../../../_images/Feature_Homography_Result.jpg

    翻译者

    Shuai Zheng, <kylezheng04@gmail.com>, http://www.cbsr.ia.ac.cn/users/szheng/

    from: http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/features2d/feature_homography/feature_homography.html#feature-homography

  • 相关阅读:
    网络流与线性规划24题 之 餐巾计划问题
    待刷题目分类(一)
    bzoj1787 [Ahoi2008]Meet 紧急集合
    Hoj2634 How to earn more?
    poj3281 Dining
    浅谈数论(三)水仙花数
    poj1637 Sightseeing tour
    动态规划的思考(1)
    网络流-最大流问题 ISAP 算法解释(转自Renfei Song's Blog)
    poj1273 Drainage Ditches
  • 原文地址:https://www.cnblogs.com/GarfieldEr007/p/5292283.html
Copyright © 2011-2022 走看看