zoukankan      html  css  js  c++  java
  • Codeforces 660A. Co-prime Array 最大公约数

    A. Co-prime Array
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given an array of n elements, you must make it a co-prime array in as few moves as possible.

    In each move you can insert any positive integral number you want not greater than 109 in any place in the array.

    An array is co-prime if any two adjacent numbers of it are co-prime.

    In the number theory, two integers a and b are said to be co-prime if the only positive integer that divides both of them is 1.

    Input

    The first line contains integer n (1 ≤ n ≤ 1000) — the number of elements in the given array.

    The second line contains n integers ai (1 ≤ ai ≤ 109) — the elements of the array a.

    Output

    Print integer k on the first line — the least number of elements needed to add to the array a to make it co-prime.

    The second line should contain n + k integers aj — the elements of the array a after adding k elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array a by adding k elements to it.

    If there are multiple answers you can print any one of them.

    Example
    input
    3
    2 7 28
    output
    1
    2 7 9 28

    题目链接:http://codeforces.com/problemset/problem/660/A

    题意:一个数组里面任意相邻的两个数互质,则数组为互质数组。添加最少的数使得这个数组为互质数组。输出添加的数的个数和添加之后
    的数组。

    思路:1和任意数都互质。

    代码:
    #include<bits/stdc++.h>
    using namespace std;
    __int64 a[1100],sign[1100];
    __int64 gcd(__int64 x,__int64 y)
    {
        __int64 t;
        if(x<y)
        {
            t=x;
            x=y;
            y=t;
        }
        while(y)
        {
            t=x%y;
            x=y;
            y=t;
        }
        return x;
    }
    int main()
    {
        int i,n;
        int ans=0;
        memset(sign,0,sizeof(sign));
        scanf("%d",&n);
        a[0]=1;
        for(i=1; i<=n; i++)
        {
            scanf("%I64d",&a[i]);
            if(a[i]>=2&&gcd(a[i],a[i-1])!=1)
            {
                ans++;
                sign[i]=1;
            }
        }
        cout<<ans<<endl;
        for(i=1; i<=n; i++)
        {
            if(sign[i]==1) cout<<"1"<<" ";
            if(i!=n) cout<<a[i]<<" ";
        }
        cout<<a[n]<<endl;
        return 0;
    }
    View Code
    I am a slow walker,but I never walk backwards.
  • 相关阅读:
    pd_ds中的hash
    洛谷P1333 瑞瑞的木棍(欧拉回路)
    2-SAT速成
    洛谷P3209 [HNOI2010]PLANAR(2-SAT)
    BZOJ2199: [Usaco2011 Jan]奶牛议会(2-SAT)
    BZOJ 1823: [JSOI2010]满汉全席(2-SAT)
    IOS深入学习(1)之图标文件(icon files)
    控制反转思想的理解实例
    poj 3259 (Bellman_Ford判断负环)
    POJ 2686 Traveling by Stagecoach 壮压DP
  • 原文地址:https://www.cnblogs.com/GeekZRF/p/5528504.html
Copyright © 2011-2022 走看看