zoukankan      html  css  js  c++  java
  • Codeforces 660A. Co-prime Array 最大公约数

    A. Co-prime Array
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given an array of n elements, you must make it a co-prime array in as few moves as possible.

    In each move you can insert any positive integral number you want not greater than 109 in any place in the array.

    An array is co-prime if any two adjacent numbers of it are co-prime.

    In the number theory, two integers a and b are said to be co-prime if the only positive integer that divides both of them is 1.

    Input

    The first line contains integer n (1 ≤ n ≤ 1000) — the number of elements in the given array.

    The second line contains n integers ai (1 ≤ ai ≤ 109) — the elements of the array a.

    Output

    Print integer k on the first line — the least number of elements needed to add to the array a to make it co-prime.

    The second line should contain n + k integers aj — the elements of the array a after adding k elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array a by adding k elements to it.

    If there are multiple answers you can print any one of them.

    Example
    input
    3
    2 7 28
    output
    1
    2 7 9 28

    题目链接:http://codeforces.com/problemset/problem/660/A

    题意:一个数组里面任意相邻的两个数互质,则数组为互质数组。添加最少的数使得这个数组为互质数组。输出添加的数的个数和添加之后
    的数组。

    思路:1和任意数都互质。

    代码:
    #include<bits/stdc++.h>
    using namespace std;
    __int64 a[1100],sign[1100];
    __int64 gcd(__int64 x,__int64 y)
    {
        __int64 t;
        if(x<y)
        {
            t=x;
            x=y;
            y=t;
        }
        while(y)
        {
            t=x%y;
            x=y;
            y=t;
        }
        return x;
    }
    int main()
    {
        int i,n;
        int ans=0;
        memset(sign,0,sizeof(sign));
        scanf("%d",&n);
        a[0]=1;
        for(i=1; i<=n; i++)
        {
            scanf("%I64d",&a[i]);
            if(a[i]>=2&&gcd(a[i],a[i-1])!=1)
            {
                ans++;
                sign[i]=1;
            }
        }
        cout<<ans<<endl;
        for(i=1; i<=n; i++)
        {
            if(sign[i]==1) cout<<"1"<<" ";
            if(i!=n) cout<<a[i]<<" ";
        }
        cout<<a[n]<<endl;
        return 0;
    }
    View Code
    I am a slow walker,but I never walk backwards.
  • 相关阅读:
    uva 1362(区间dp+计数)
    uva 11174(排列组合+搜索)
    简单递推系列 uva习题
    基本计数方法系列 uva习题
    Codeforces Round #209 (Div. 2) Problem A Table(找规律)
    CodeChef November Challenge 2013 解题报告
    2012 chengdu现场赛 Browsing History HDU4464(简单字符串)
    CodeChef TechFest 2013 Cool Numbers(搜索)
    CodeChef Inscription 2013 Wonderland jewellery(简单题)
    页面滚动marquee标签
  • 原文地址:https://www.cnblogs.com/GeekZRF/p/5528504.html
Copyright © 2011-2022 走看看