zoukankan      html  css  js  c++  java
  • 理论推导中常用到的一些概念

    An unbiased risk estimator vs. The same minimizer

    1. 矫正后的 loss 可以导致一个无偏的(consistent)估计,

    [mathbb E_{p(x, ilde{y})}[ell_{correct}^1(h(x), ilde{y})] = mathbb E_{p(x,y)}[ell(h(x),y)],forall\,h ]

    1. 两者有相同的 minimizer:

    [mathop{arg!min}_hmathbb E_{p(x, ilde{y})}[ell_{correct}^2(h(x), ilde{y})] = mathop{arg!min}_hmathbb E_{p(x,y)}[ell(h(x),y)] ]

    上述条件 (2) 比 (1)要弱一些:

    • (1) 可以推出(2)
    • 在 (1) 不成立的情形下,(2)有可能成立。
    • (2) 一般是在保留相同的 bayesian optimal classifier

    Reference:

    • NIPS-13. Learning with noisy label
    • CVPR-17. Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
    • ICML-20. Does Label Smoothing Mitigate Label Noise?
    • ICML-20. Learning with Multiple Complementary Labels

    Statistically consistent, classifier-consistency, risk-consistent

    统计相容性,更多的考虑,在 (n oinfty) 的情况下,两者之间的差别

    Reference:

    • NIPS-19 Are anchor points really indispensable in label-noise learning?(提到 risk-consistent, classifier consistent)
    • ICML-20 Does Label Smoothing Mitigate Label Noise? (提到 classification consistency)
    • ICML-13 On the statistical Consistency of Algorithms for Binary Classification under Class Imbalance
    • ICML-20. Progressive Identification of True Labels for Partial-Label Learning (classifier-consistency)
    • ICML-20 Learning with multiple complementary labels (classifier-consistency, risk-consistent)
    • NIPS-20 Provably consistent partial-label learning (risk consistent, classifier-consistent)

    Excess risk bound vs. Generalization bound vs. learnability

    (1). Excess risk 主要考虑的是当前 (ERM 算法所导出)分类器 与 最优的分类器的泛化误差的 gap
    (2). Generalization bound 考虑的是经验误差与泛化误差的 uniform 的 gap,对假设空间中的所有假设同时成立,因此需要用 Rademacher complexity or VC dim 来刻画假设空间的复杂度。
    (3). 有了 generalization bound, 就非常容易导出 excess risk bound, 几乎就是两倍的关系。(参见 Foundations of ML (2nd) Proposition 4.1 )
    (4). 可学习性考虑的是 ERM 算法输出的分类器的泛化误差 与 最优的分类器的泛化误差之间的 gap,其实就是 Excess risk。

    参考文献:

    • ICML20. Class-Weighted Classification: Trade-offs and Robust Approaches.
    • ICML20. Learning with Bounded Instance- and Label-dependent Label Noise.

    Plug-in classifiers

    Reference

    • NIPS09
    • ICML20.
    • ICML20. Class-Weighted Classification: Trade-offs and Robust Approaches
    • 之前审稿的 rejection paper

    Loss unbounded below 导致 overfit

    不同于 0-1 error, 凸 loss 通常是无界的,会导致给与 outlier 过大的权重

    Reference:

    • NIPS-09
    • ICML-20. Learning with Multiple Complementary Labels
    • NIPS-19. Robust Bi-Tempered Logistic Loss Based on Bregman Divergences

    0-1 loss non-convex, non-smooth

    Bayes classifier 其实是在优化 0-1 loss, 也就是在优化错误的概率。

    Reference:

    • NeuroComputing-15. Making Risk Minimization Tolerant to Label Noise
  • 相关阅读:
    读书笔记之理想设计的特征
    一些javascript 变量声明的 疑惑
    LINQ 使用方法
    Google MySQL tool releases
    读书笔记之设计的层次
    EF之数据库连接问题The specified named connection is either not found in the configuration, not intended to be used with the Ent
    转载 什么是闭包
    javascript面向对象起步
    Tips
    数据结构在游戏中的应用
  • 原文地址:https://www.cnblogs.com/Gelthin2017/p/13702384.html
Copyright © 2011-2022 走看看