zoukankan      html  css  js  c++  java
  • 理论推导中常用到的一些概念

    An unbiased risk estimator vs. The same minimizer

    1. 矫正后的 loss 可以导致一个无偏的(consistent)估计,

    [mathbb E_{p(x, ilde{y})}[ell_{correct}^1(h(x), ilde{y})] = mathbb E_{p(x,y)}[ell(h(x),y)],forall\,h ]

    1. 两者有相同的 minimizer:

    [mathop{arg!min}_hmathbb E_{p(x, ilde{y})}[ell_{correct}^2(h(x), ilde{y})] = mathop{arg!min}_hmathbb E_{p(x,y)}[ell(h(x),y)] ]

    上述条件 (2) 比 (1)要弱一些:

    • (1) 可以推出(2)
    • 在 (1) 不成立的情形下,(2)有可能成立。
    • (2) 一般是在保留相同的 bayesian optimal classifier

    Reference:

    • NIPS-13. Learning with noisy label
    • CVPR-17. Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
    • ICML-20. Does Label Smoothing Mitigate Label Noise?
    • ICML-20. Learning with Multiple Complementary Labels

    Statistically consistent, classifier-consistency, risk-consistent

    统计相容性,更多的考虑,在 (n oinfty) 的情况下,两者之间的差别

    Reference:

    • NIPS-19 Are anchor points really indispensable in label-noise learning?(提到 risk-consistent, classifier consistent)
    • ICML-20 Does Label Smoothing Mitigate Label Noise? (提到 classification consistency)
    • ICML-13 On the statistical Consistency of Algorithms for Binary Classification under Class Imbalance
    • ICML-20. Progressive Identification of True Labels for Partial-Label Learning (classifier-consistency)
    • ICML-20 Learning with multiple complementary labels (classifier-consistency, risk-consistent)
    • NIPS-20 Provably consistent partial-label learning (risk consistent, classifier-consistent)

    Excess risk bound vs. Generalization bound vs. learnability

    (1). Excess risk 主要考虑的是当前 (ERM 算法所导出)分类器 与 最优的分类器的泛化误差的 gap
    (2). Generalization bound 考虑的是经验误差与泛化误差的 uniform 的 gap,对假设空间中的所有假设同时成立,因此需要用 Rademacher complexity or VC dim 来刻画假设空间的复杂度。
    (3). 有了 generalization bound, 就非常容易导出 excess risk bound, 几乎就是两倍的关系。(参见 Foundations of ML (2nd) Proposition 4.1 )
    (4). 可学习性考虑的是 ERM 算法输出的分类器的泛化误差 与 最优的分类器的泛化误差之间的 gap,其实就是 Excess risk。

    参考文献:

    • ICML20. Class-Weighted Classification: Trade-offs and Robust Approaches.
    • ICML20. Learning with Bounded Instance- and Label-dependent Label Noise.

    Plug-in classifiers

    Reference

    • NIPS09
    • ICML20.
    • ICML20. Class-Weighted Classification: Trade-offs and Robust Approaches
    • 之前审稿的 rejection paper

    Loss unbounded below 导致 overfit

    不同于 0-1 error, 凸 loss 通常是无界的,会导致给与 outlier 过大的权重

    Reference:

    • NIPS-09
    • ICML-20. Learning with Multiple Complementary Labels
    • NIPS-19. Robust Bi-Tempered Logistic Loss Based on Bregman Divergences

    0-1 loss non-convex, non-smooth

    Bayes classifier 其实是在优化 0-1 loss, 也就是在优化错误的概率。

    Reference:

    • NeuroComputing-15. Making Risk Minimization Tolerant to Label Noise
  • 相关阅读:
    flv mime IIS设置
    正则表达式
    MATLAB out of memory
    Cyclic prefix
    Windows Live Writer Test
    zz排序算法的稳定性
    MATLAB的分数和小数
    young矩阵学习
    Python初体验(二)
    利用VS2010调用Excel的宏
  • 原文地址:https://www.cnblogs.com/Gelthin2017/p/13702384.html
Copyright © 2011-2022 走看看