zoukankan      html  css  js  c++  java
  • Android性能专项测试之耗电量统计API

    版权声明:本文为Doctorq原创文章,未经博主允许不得转载。 https://blog.csdn.net/qhshiniba/article/details/49155979

    参考文章:Android应用的耗电量统计 
    深入浅出Android App耗电量统计 
    Battery stats - CPU total vs CPU foreground 
    深入浅出 Android App 耗电量统计 
    浅析Wakelock机制与Android电源管理

    耗电量API

    Android系统中很早就有耗电量的API,只不过一直都是隐藏的,Android系统的设置-电池功能就是调用的这个API,该API的核心部分是调用了com.android.internal.os.BatteryStatsHelper类,利用PowerProfile类,读取power_profile.xml文件,我们一起来看看具体如何计算耗电量,首先从最新版本6.0开始看

    6.0的API

    源码

    BatteryStatsHelper 
    其中计算耗电量的方法为490行的processAppUsage,下来一步一步来解释该方法。

    App耗电量的计算探究

    private void processAppUsage(SparseArray<UserHandle> asUsers) {

    方法的参数是一个SparseArray数组,存储的对象是UserHandle,官方文档给出的解释是,代表一个用户,可以理解为这个类里面存储了用户的相关信息.

    final boolean forAllUsers = (asUsers.get(UserHandle.USER_ALL) != null);

    然后判断该次计算是否针对所有用户,通过UserHandleUSER_ALL值来判断,该值为-1,源码的地址在https://github.com/DoctorQ/platform_frameworks_base/blob/android-6.0.0_r1/core/java/android/os/UserHandle.java.

    mStatsPeriod = mTypeBatteryRealtime;

    然后给公共变量int类型的mStatsPeriod赋值,这个值mTypeBatteryRealtime的计算过程又在320行的refreshStats方法中:

    mTypeBatteryRealtime = mStats.computeBatteryRealtime(rawRealtimeUs, mStatsType);

    这里面用到了BatteryStats(mStats)类中的computeBatteryRealtime方法,该方法计算出此次统计电量的时间间隔。好,歪楼了,回到BatteryStatsHelper中。

    BatterySipper osSipper = null;
    final SparseArray<? extends Uid> uidStats = mStats.getUidStats();
    final int NU = uidStats.size();

    首先创建一个BatterySipper对象osSipper,该对象里面可以存储一些后续我们要计算的值,然后通过BatteryStats类对象mStats来得到一个包含Uid的对象的SparseArray组数,然后计算了一下这个数组的大小,保存在变量NU中。

    for (int iu = 0; iu < NU; iu++) {
    final Uid u = uidStats.valueAt(iu);
                final BatterySipper app = new BatterySipper(BatterySipper.DrainType.APP, u, 0);

    然后for循环计算每个Uid代表的App的耗电量,因为BatterySipper可计算的类型有三种:应用, 系统服务, 硬件类型,所以这个地方传入的是DrainType.APP,还有其他可选类型如下:

    public enum DrainType {
            IDLE,
            CELL,
            PHONE,
            WIFI,
            BLUETOOTH,
            FLASHLIGHT,
            SCREEN,
            APP,
            USER,
            UNACCOUNTED,
            OVERCOUNTED,
            CAMERA
        }

    列举了目前可计算耗电量的模块。

    mCpuPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType);
                mWakelockPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType);
                mMobileRadioPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType);
                mWifiPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType);
                mBluetoothPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType);
                mSensorPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType);
                mCameraPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType);
                mFlashlightPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType);

    其中mStatsType的值为BatteryStats.STATS_SINCE_CHARGED,代表了我们的计算规则是从上次充满电后数据,还有一种规则是STATS_SINCE_UNPLUGGED是拔掉USB线后的数据。而mRawRealtime是当前时间,mRawUptime是运行时间。6.0的对各个模块的消耗都交给了单独的类去计算,这些类都继承于PowerCalculator抽象类:

    蓝牙耗电:BluetoothPowerCalculator.java
    摄像头耗电:CameraPowerCalculator.java
    Cpu耗电:CpuPowerCalculator.java
    手电筒耗电:FlashlightPowerCalculator.java
    无线电耗电:MobileRadioPowerCalculator.java
    传感器耗电:SensorPowerCalculator.java
    Wakelock耗电:WakelockPowerCalculator.java
    Wifi耗电:WifiPowerCalculator.java

    这一部分我一会单独拿出来挨个解释,现在我们还是回到BatteryStatsHelper继续往下走

    final double totalPower = app.sumPower();

    BatterySipper#sumPower方法是统计总耗电量,方法详情如下,其中usagePowerMah这个值有点特殊,其他的上面都讲过.

    /**
         * Sum all the powers and store the value into `value`.
         * @return the sum of all the power in this BatterySipper.
         */
        public double sumPower() {
            return totalPowerMah = usagePowerMah + wifiPowerMah + gpsPowerMah + cpuPowerMah +
                    sensorPowerMah + mobileRadioPowerMah + wakeLockPowerMah + cameraPowerMah +
                    flashlightPowerMah;
        }

    然后根据是否是DEBUG版本打印信息,这个没啥可说的,然后会把刚才计算的电量值添加到列表中:

     // Add the app to the list if it is consuming power.
                if (totalPower != 0 || u.getUid() == 0) {
                    //
                    // Add the app to the app list, WiFi, Bluetooth, etc, or into "Other Users" list.
                    //
                    final int uid = app.getUid();
                    final int userId = UserHandle.getUserId(uid);
                    if (uid == Process.WIFI_UID) {
                        mWifiSippers.add(app);
                    } else if (uid == Process.BLUETOOTH_UID) {
                        mBluetoothSippers.add(app);
                    } else if (!forAllUsers && asUsers.get(userId) == null
                            && UserHandle.getAppId(uid) >= Process.FIRST_APPLICATION_UID) {
                        // We are told to just report this user's apps as one large entry.
                        List<BatterySipper> list = mUserSippers.get(userId);
                        if (list == null) {
                            list = new ArrayList<>();
                            mUserSippers.put(userId, list);
                        }
                        list.add(app);
                    } else {
                        mUsageList.add(app);
                    }
    
                    if (uid == 0) {
                        osSipper = app;
                    }
                }

    首先判断totalPower的值和当前uid号是否符合规则,规则为总耗电量不为0或者用户id为0.当uid表明为WIFI或者蓝牙时,添加到下面对应的列表中,一般情况下正常的应用我们直接保存到下面的mUsageList中就行就行,但是也有一些例外:

    /**
         * List of apps using power.
         */
        private final List<BatterySipper> mUsageList = new ArrayList<>();
    
        /**
         * List of apps using wifi power.
         */
        private final List<BatterySipper> mWifiSippers = new ArrayList<>();
    
        /**
         * List of apps using bluetooth power.
         */
        private final List<BatterySipper> mBluetoothSippers = new ArrayList<>();

    如果我们的系统是单用户系统,且当前的userId号不在我们的统计范围内,且其进程id号是大于Process.FIRST_APPLICATION_UID(10000,系统分配给普通应用的其实id号),我们就要将其存放到mUserSippers数组中,定义如下:

    private final SparseArray<List<BatterySipper>> mUserSippers = new SparseArray<>();

    最后判断uid为0的话,代表是Android操作系统的耗电量,赋值给osSipper(494行定义)就可以了,这样一个app的计算就完成了,遍历部分就不说了,保存这个osSipper是为了最后一步计算:

    if (osSipper != null) {
                // The device has probably been awake for longer than the screen on
                // time and application wake lock time would account for.  Assign
                // this remainder to the OS, if possible.
                mWakelockPowerCalculator.calculateRemaining(osSipper, mStats, mRawRealtime,
                                                            mRawUptime, mStatsType);
                osSipper.sumPower();
            }

    主流程我们已经介绍完了,下面来看各个子模块耗电量的计算

    Cpu耗电量

    CpuPowerCalculator.java

    Cpu的计算要用到PowerProfile类,该类主要是解析power_profile.xml:

    
    <device name="Android">
      <!-- Most values are the incremental current used by a feature,
           in mA (measured at nominal voltage).
           The default values are deliberately incorrect dummy values.
           OEM's must measure and provide actual values before
           shipping a device.
           Example real-world values are given in comments, but they
           are totally dependent on the platform and can vary
           significantly, so should be measured on the shipping platform
           with a power meter. -->
      <item name="none">0</item>
      <item name="screen.on">0.1</item>  <!-- ~200mA -->
      <item name="screen.full">0.1</item>  <!-- ~300mA -->
      <item name="bluetooth.active">0.1</item> <!-- Bluetooth data transfer, ~10mA -->
      <item name="bluetooth.on">0.1</item>  <!-- Bluetooth on & connectable, but not connected, ~0.1mA -->
      <item name="wifi.on">0.1</item>  <!-- ~3mA -->
      <item name="wifi.active">0.1</item>  <!-- WIFI data transfer, ~200mA -->
      <item name="wifi.scan">0.1</item>  <!-- WIFI network scanning, ~100mA -->
      <item name="dsp.audio">0.1</item> <!-- ~10mA -->
      <item name="dsp.video">0.1</item> <!-- ~50mA -->
      <item name="camera.flashlight">0.1</item> <!-- Avg. power for camera flash, ~160mA -->
      <item name="camera.avg">0.1</item> <!-- Avg. power use of camera in standard usecases, ~550mA -->
      <item name="radio.active">0.1</item> <!-- ~200mA -->
      <item name="radio.scanning">0.1</item> <!-- cellular radio scanning for signal, ~10mA -->
      <item name="gps.on">0.1</item> <!-- ~50mA -->
      <!-- Current consumed by the radio at different signal strengths, when paging -->
      <array name="radio.on"> <!-- Strength 0 to BINS-1 -->
          <value>0.2</value> <!-- ~2mA -->
          <value>0.1</value> <!-- ~1mA -->
      </array>
      <!-- Different CPU speeds as reported in
           /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state -->
      <array name="cpu.speeds">
          <value>400000</value> <!-- 400 MHz CPU speed -->
      </array>
      <!-- Current when CPU is idle -->
      <item name="cpu.idle">0.1</item>
      <!-- Current at each CPU speed, as per 'cpu.speeds' -->
      <array name="cpu.active">
          <value>0.1</value>  <!-- ~100mA -->
      </array>
      <!-- This is the battery capacity in mAh (measured at nominal voltage) -->
      <item name="battery.capacity">1000</item>
    
      <array name="wifi.batchedscan"> <!-- mA -->
          <value>.0002</value> <!-- 1-8/hr -->
          <value>.002</value>  <!-- 9-64/hr -->
          <value>.02</value>   <!-- 65-512/hr -->
          <value>.2</value>    <!-- 513-4,096/hr -->
          <value>2</value>    <!-- 4097-/hr -->
      </array>
    </device>

    这个里面存储了Cpu(cpu.speeds)的主频等级,以及每个主频每秒消耗的毫安(cpu.active),好,现在回到CpuPowerCalculator中,先来看构造方法

    public CpuPowerCalculator(PowerProfile profile) {
            final int speedSteps = profile.getNumSpeedSteps();
            mPowerCpuNormal = new double[speedSteps];
            mSpeedStepTimes = new long[speedSteps];
            for (int p = 0; p < speedSteps; p++) {
                mPowerCpuNormal[p] = profile.getAveragePower(PowerProfile.POWER_CPU_ACTIVE, p);
            }
        }

    第一步获得Cpu有几个主频等级,因为不同等级消耗的电量不一样,所以要区别对待,根据主频的个数,然后初始化mPowerCpuNormalmSpeedStepTimes,前者用来保存不同等级的耗电速度,后者用来保存在不同等级上耗时,然后给mPowerCpuNormal的每个元素附上值。构造方法就完成了其所有的工作,现在来计算方法calculateApp,

    final int speedSteps = mSpeedStepTimes.length;
    
            long totalTimeAtSpeeds = 0;
            for (int step = 0; step < speedSteps; step++) {
                mSpeedStepTimes[step] = u.getTimeAtCpuSpeed(step, statsType);
                totalTimeAtSpeeds += mSpeedStepTimes[step];
            }
            totalTimeAtSpeeds = Math.max(totalTimeAtSpeeds, 1);
    

    首先得到Cpu主频等级个数,然后BatteryStats.Uid得到不同主频上执行时间,计算Cpu总耗时保存在totalTimeAtSpeeds中,

    app.cpuTimeMs = (u.getUserCpuTimeUs(statsType) + u.getSystemCpuTimeUs(statsType)) / 1000;

    Cpu的执行时间分很多部分,但是我们关注UserKernal部分,也就是上面的UserCpuTimeSystemCpuTime

    double cpuPowerMaMs = 0;
            for (int step = 0; step < speedSteps; step++) {
                final double ratio = (double) mSpeedStepTimes[step] / totalTimeAtSpeeds;
                final double cpuSpeedStepPower = ratio * app.cpuTimeMs * mPowerCpuNormal[step];
                if (DEBUG && ratio != 0) {
                    Log.d(TAG, "UID " + u.getUid() + ": CPU step #"
                            + step + " ratio=" + BatteryStatsHelper.makemAh(ratio) + " power="
                            + BatteryStatsHelper.makemAh(cpuSpeedStepPower / (60 * 60 * 1000)));
                }
                cpuPowerMaMs += cpuSpeedStepPower;
            }

    上面的代码就是将不同主频的消耗累加到一起,但是其中值得注意的是,他并不是用各个主频的消耗时间*主频单位时间内消耗的电量,而是用一个radio变量来计算得到各个主频段执行时间占总时间的百分比,然后用cpuTimeMs来换算成各个主频的Cpu实际消耗时间,这比5.0的API多了这么一步,我估计是发现了计算的不严谨性,这也是Android迟迟不放出统计电量方式的原因,其实google自己对这块也没有把握,所以才会造成不同API计算方式的差异。好,计算完我们的总消耗后,是不是就算完事了?如果你只需要得到一个App的耗电总量,上面的讲解已经足够了,但是6.0的API计算了每个App的不同进程的耗电量,这个我们就只当看看就行,暂时没什么实际意义。

    // Keep track of the package with highest drain.
            double highestDrain = 0;
    
            app.cpuFgTimeMs = 0;
            final ArrayMap<String, ? extends BatteryStats.Uid.Proc> processStats = u.getProcessStats();
            final int processStatsCount = processStats.size();
            for (int i = 0; i < processStatsCount; i++) {
                final BatteryStats.Uid.Proc ps = processStats.valueAt(i);
                final String processName = processStats.keyAt(i);
                app.cpuFgTimeMs += ps.getForegroundTime(statsType);
    
                final long costValue = ps.getUserTime(statsType) + ps.getSystemTime(statsType)
                        + ps.getForegroundTime(statsType);
    
                // Each App can have multiple packages and with multiple running processes.
                // Keep track of the package who's process has the highest drain.
                if (app.packageWithHighestDrain == null ||
                        app.packageWithHighestDrain.startsWith("*")) {
                    highestDrain = costValue;
                    app.packageWithHighestDrain = processName;
                } else if (highestDrain < costValue && !processName.startsWith("*")) {
                    highestDrain = costValue;
                    app.packageWithHighestDrain = processName;
                }
            }
    
            // Ensure that the CPU times make sense.
            if (app.cpuFgTimeMs > app.cpuTimeMs) {
                if (DEBUG && app.cpuFgTimeMs > app.cpuTimeMs + 10000) {
                    Log.d(TAG, "WARNING! Cputime is more than 10 seconds behind Foreground time");
                }
    
                // Statistics may not have been gathered yet.
                app.cpuTimeMs = app.cpuFgTimeMs;
            }

    上面统计同一App下不同的进程的耗电量,得到消耗最大的进程名,保存到BatterySipper对象中,然后得出AppCpuforeground消耗时间,将foreground时间与之前计算得到的cpuTimeMs进行比较,如果foreground时间比cpuTimeMs还要大,那么就将cpuTimeMs的时间改变为foreground的值,但是这个值的变化对之前耗电总量的计算没有丝毫影响。

    // Convert the CPU power to mAh
            app.cpuPowerMah = cpuPowerMaMs / (60 * 60 * 1000);

    最后的最后,将耗电量用mAh单位来表示,所以在毫秒的基础上除以60*60*1000

    总结:Cpu耗电量的计算是要区分不同主频的,频率不同,单位时间内消耗的电量是有区分的,这一点要明白。还有一点就是不同主频上的执行时间不是通过BatteryStats.Uid#getTimeAtCpuSpeed方法得到的,二十是通过百分比和BatteryStats.Uid#getUserCpuTimeUsgetSystemCpuTimeUs计算得到cpuTimeMs乘积得到的。最后一点就是,cpuTimeMs时间是会在计算完毕后进行比较,比较的对象是CPUforeground时间。

    WakeLock耗电量的计算

    WakelockPowerCalculator.java

    从构造方法开始,

    public WakelockPowerCalculator(PowerProfile profile) {
            mPowerWakelock = profile.getAveragePower(PowerProfile.POWER_CPU_AWAKE);
        }

    首先得到power_profile.xmlcpu.awake表示的值,保存在mPowerWakelock变量中。构造方法只做了这么点事,下面进入calculateApp方法。

    @Override
        public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs,
                                 long rawUptimeUs, int statsType) {
            long wakeLockTimeUs = 0;
            final ArrayMap<String, ? extends BatteryStats.Uid.Wakelock> wakelockStats =
                    u.getWakelockStats();
            final int wakelockStatsCount = wakelockStats.size();
            for (int i = 0; i < wakelockStatsCount; i++) {
                final BatteryStats.Uid.Wakelock wakelock = wakelockStats.valueAt(i);
    
                // Only care about partial wake locks since full wake locks
                // are canceled when the user turns the screen off.
                BatteryStats.Timer timer = wakelock.getWakeTime(BatteryStats.WAKE_TYPE_PARTIAL);
                if (timer != null) {
                    wakeLockTimeUs += timer.getTotalTimeLocked(rawRealtimeUs, statsType);
                }
            }
            app.wakeLockTimeMs = wakeLockTimeUs / 1000; // convert to millis
            mTotalAppWakelockTimeMs += app.wakeLockTimeMs;
    
            // Add cost of holding a wake lock.
            app.wakeLockPowerMah = (app.wakeLockTimeMs * mPowerWakelock) / (1000*60*60);
            if (DEBUG && app.wakeLockPowerMah != 0) {
                Log.d(TAG, "UID " + u.getUid() + ": wake " + app.wakeLockTimeMs
                        + " power=" + BatteryStatsHelper.makemAh(app.wakeLockPowerMah));
            }
        }

    首先获得Wakelock的数量,然后逐个遍历得到每个Wakelock对象,得到该对象后,得到BatteryStats.WAKE_TYPE_PARTIAL的唤醒时间,然后累加,其实wakelock有4种,为什么只取partial的时间,具体代码google也没解释的很清楚,只是用一句注释打发了我们。得到总时间后,就可以与构造方法中的单位时间waklock消耗电量相乘得到Wakelock消耗的总电量。

    Wifi耗电量的计算

    首先来看构造方法,来了解一下WIFI的耗电量计算用到了power_profile.xml中的哪些属性:

    public WifiPowerCalculator(PowerProfile profile) {
            mIdleCurrentMa = profile.getAveragePower(PowerProfile.POWER_WIFI_CONTROLLER_IDLE);
            mTxCurrentMa = profile.getAveragePower(PowerProfile.POWER_WIFI_CONTROLLER_TX);
            mRxCurrentMa = profile.getAveragePower(PowerProfile.POWER_WIFI_CONTROLLER_RX);
        }

    我们去PowerProfile.java找到上面三个常量代表的属性:

     public static final String POWER_WIFI_CONTROLLER_IDLE = "wifi.controller.idle";
        public static final String POWER_WIFI_CONTROLLER_RX = "wifi.controller.rx";
        public static final String POWER_WIFI_CONTROLLER_TX = "wifi.controller.tx";

    知道对应的xml的属性后我们直接看calculateApp方法:

    @Override
        public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs,
                                 long rawUptimeUs, int statsType) {
            final long idleTime = u.getWifiControllerActivity(BatteryStats.CONTROLLER_IDLE_TIME,
                    statsType);
            final long txTime = u.getWifiControllerActivity(BatteryStats.CONTROLLER_TX_TIME, statsType);
            final long rxTime = u.getWifiControllerActivity(BatteryStats.CONTROLLER_RX_TIME, statsType);
            app.wifiRunningTimeMs = idleTime + rxTime + txTime;
            app.wifiPowerMah =
                    ((idleTime * mIdleCurrentMa) + (txTime * mTxCurrentMa) + (rxTime * mRxCurrentMa))
                    / (1000*60*60);
            mTotalAppPowerDrain += app.wifiPowerMah;
    
            app.wifiRxPackets = u.getNetworkActivityPackets(BatteryStats.NETWORK_WIFI_RX_DATA,
                    statsType);
            app.wifiTxPackets = u.getNetworkActivityPackets(BatteryStats.NETWORK_WIFI_TX_DATA,
                    statsType);
            app.wifiRxBytes = u.getNetworkActivityBytes(BatteryStats.NETWORK_WIFI_RX_DATA,
                    statsType);
            app.wifiTxBytes = u.getNetworkActivityBytes(BatteryStats.NETWORK_WIFI_TX_DATA,
                    statsType);
    
            if (DEBUG && app.wifiPowerMah != 0) {
                Log.d(TAG, "UID " + u.getUid() + ": idle=" + idleTime + "ms rx=" + rxTime + "ms tx=" +
                        txTime + "ms power=" + BatteryStatsHelper.makemAh(app.wifiPowerMah));
            }
        }

    这里的计算方式也是差不多,先根据Uid得到时间,然后乘以构造方法里对应的wifi类型单位时间内消耗电量值,没什么难点,就不一一分析,需要注意的是,这里面还计算了wifi传输的数据包的数量和字节数。

    蓝牙耗电量的计算

    蓝牙关注的power_profile.xml中的属性如下:

     public static final String POWER_BLUETOOTH_CONTROLLER_IDLE = "bluetooth.controller.idle";
        public static final String POWER_BLUETOOTH_CONTROLLER_RX = "bluetooth.controller.rx";
        public static final String POWER_BLUETOOTH_CONTROLLER_TX = "bluetooth.controller.tx";

    但是还没有单独为App计算耗电量的,所以这个地方是空的。

    @Override
        public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs,
                                 long rawUptimeUs, int statsType) {
            // No per-app distribution yet.
        }

    摄像头耗电量的计算

    CameraPowerCalculator.java

    摄像头的耗电量关注的是power_profile.xmlcamera.avg属性代表的值,保存到mCameraPowerOnAvg,

    public static final String POWER_CAMERA = "camera.avg";

    计算方式如下:

    @Override
        public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs,
                                 long rawUptimeUs, int statsType) {
    
            // Calculate camera power usage.  Right now, this is a (very) rough estimate based on the
            // average power usage for a typical camera application.
            final BatteryStats.Timer timer = u.getCameraTurnedOnTimer();
            if (timer != null) {
                final long totalTime = timer.getTotalTimeLocked(rawRealtimeUs, statsType) / 1000;
                app.cameraTimeMs = totalTime;
                app.cameraPowerMah = (totalTime * mCameraPowerOnAvg) / (1000*60*60);
            } else {
                app.cameraTimeMs = 0;
                app.cameraPowerMah = 0;
            }
        }

    先计算摄像头打开的时间totalTime,然后根据这个值乘以mCameraPowerOnAvg得到摄像头的耗电量。

    手电筒耗电量的计算

    FlashlightPowerCalculator.java

    public static final String POWER_FLASHLIGHT = "camera.flashlight";

    跟摄像头类似,也是先得到时间,然后乘积,不想说了,没意思。

    无线电耗电量的计算

    MobileRadioPowerCalculator.java

    关注的是power_profile.xml中如下三个属性:

    /**
         * Power consumption when screen is on, not including the backlight power.
         */
        public static final String POWER_SCREEN_ON = "screen.on";
    
        /**
         * Power consumption when cell radio is on but not on a call.
         */
        public static final String POWER_RADIO_ON = "radio.on";
    
        /**
         * Power consumption when cell radio is hunting for a signal.
         */
        public static final String POWER_RADIO_SCANNING = "radio.scanning";

    当无限量连接上时,根据信号强度不同,耗电量的计算是有区别的,所以在构造方法,当无线电的状态为on时,是要特殊处理的,其他两个状态(active和scan)就正常取值就可以了。

    /**
         * Power consumption when screen is on, not including the backlight power.
         */
        public static final String POWER_SCREEN_ON = "screen.on";
    
        /**
         * Power consumption when cell radio is on but not on a call.
         */
        public static final String POWER_RADIO_ON = "radio.on";
    
        /**
         * Power consumption when cell radio is hunting for a signal.
         */
        public static final String POWER_RADIO_SCANNING = "radio.scanning";

    计算的方式分两种,以无线电处于active状态的次数为区分,当active大于0,我们用处于active状态的时间来乘以它的单位耗时。另一种情况就要根据网络转化的数据包来计算耗电量了。

    传感器耗电量的计算

    SensorPowerCalculator.java

    只关注一个属性:

     public static final String POWER_GPS_ON = "gps.on";
    • 1

    计算方式如下:

    @Override
        public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs,
                                 long rawUptimeUs, int statsType) {
            // Process Sensor usage
            final SparseArray<? extends BatteryStats.Uid.Sensor> sensorStats = u.getSensorStats();
            final int NSE = sensorStats.size();
            for (int ise = 0; ise < NSE; ise++) {
                final BatteryStats.Uid.Sensor sensor = sensorStats.valueAt(ise);
                final int sensorHandle = sensorStats.keyAt(ise);
                final BatteryStats.Timer timer = sensor.getSensorTime();
                final long sensorTime = timer.getTotalTimeLocked(rawRealtimeUs, statsType) / 1000;
                switch (sensorHandle) {
                    case BatteryStats.Uid.Sensor.GPS:
                        app.gpsTimeMs = sensorTime;
                        app.gpsPowerMah = (app.gpsTimeMs * mGpsPowerOn) / (1000*60*60);
                        break;
                    default:
                        final int sensorsCount = mSensors.size();
                        for (int i = 0; i < sensorsCount; i++) {
                            final Sensor s = mSensors.get(i);
                            if (s.getHandle() == sensorHandle) {
                                app.sensorPowerMah += (sensorTime * s.getPower()) / (1000*60*60);
                                break;
                            }
                        }
                        break;
                }
            }
        }

    当传感器的类型为GPS时,我们计算每个传感器的时间然后乘以耗电量,和所有的耗电量计算都是一样,不同的是,当传感器不是GPS时,这个时候计算就根据SensorManager得到所有传感器类型,这个里面保存有不同传感器的单位耗电量,这样就能计算不同传感器的耗电量。

    总结

    至此我已经把App耗电量的计算讲完了(还有硬件),前后花费3天时间,好痛苦(此处一万只草泥马),不过好在自己也算对这个耗电量的理解有了一定的认识。google官方对耗电量的统计给出的解释都是不能代表真实数据,只能作为参考值,因为受power_profile.xml的干扰太大,如果手机厂商没有严格设置这个文件,那可想而知出来的值可能是不合理的。

    提示

    腾讯的GT团队前几天推出了耗电量的计算APK,原理是一样的,大家可以试用下GT

  • 相关阅读:
    maven 错误:读取 xxx.jar 时出错;invalid LOC header (bad signature) 1 错误
    设计模式总结篇系列:建造者模式(Builder)
    java.lang.ClassCastException: com.google.gson.internal.LinkedTreeMap cannot be cast to
    Rxlifecycle使用详解,解决RxJava内存泄露问题
    详细解析RxAndroid的使用方式
    Android开源项目:GifView——Android显示GIF动画
    Rxjava2的学习与总结
    Pycharm连接gitlab
    Pycharm+Django+Python+MySQL开发 后台管理数据库
    Django-Model操作数据库(增删改查、连表结构)
  • 原文地址:https://www.cnblogs.com/Gent-Wang/p/9667708.html
Copyright © 2011-2022 走看看