zoukankan      html  css  js  c++  java
  • Python collections模块总结

    Python collections模块总结

    除了我们使用的那些基础的数据结构,还有包括其它的一些模块提供的数据结构,有时甚至比基础的数据结构还要好用。

    collections

    ChainMap

    这是一个为多个映射创建单一视图的类字典类型,也就是说,它同样具有字典类型的方法,它比基础数据结构中的字典的创建和多次更新要快,需要注意的是,增删改的操作都只会针对该对象的第一个字典,其余字典不会发生改变,但是如果是查找,则会在多个字典中查找,直到找到第一个出现的key为止。

    特有方法解释
    maps返回全部的字典(这个列表中至少存在一个列表)
    new_child在字典列表头部插入字典,如果其参数为空,则会默认插入一个空字典,并且返回一个改变后的ChainMap对象
    parents返回除了第一个字典的其余字典列表的ChainMap对象,可以用来查询除了第一个列表以外的内容。
    import collections
    a = {1: 2, 2: 3}
    b = {1: 3, 3: 4, 4: 5}
    chains = collections.ChainMap(a, b)
    # maps
    # 注意maps是个属性,不是一个方法,其改变
    print(chains.maps)  # [{1: 2, 2: 3}, {1: 3, 3: 4, 4: 5}]
    # get
    assert chains.get(1, -1) == 2
    # parents
    # 从第二个map开始找
    assert chains.parents.get(1, -1) == 3
    # popitem
    assert chains.popitem() == (2, 3)
    # pop
    # 返回的是value
    assert chains.pop(1) == 2
    # new_child
    assert chains.new_child()
    print(chains.maps)  # [{}, {1: 3, 3: 4, 4: 5}]
    chains[2] = 1
    print(chains.maps)  # [{2: 1}, {1: 3, 3: 4, 4: 5}]
    # setdedault
    # 如果已经存在key,则不会添加
    assert chains.setdefault(1, 10) == 3
    # update
    chains.update({2: 4, 3: 5})
    print(chains.maps)  # [{1: 2, 2: 4, 3: 5}, {1: 3, 3: 4, 4: 5}]
    # keys
    print(chains.keys())  # KeysView(ChainMap({2: 4, 3: 5}, {1: 3, 3: 4, 4: 5}))
    # KeysView 继承了mapping和set
    print(2 in chains.keys())  # True
    print(len(chains.keys()))  # 4(重复的不算)
    # clear
    chains.clear()
    print(chains.maps)  # [{}, {1: 3, 3: 4, 4: 5}]
    

    就像它的特点一样,它适用于以下的情况:

    1. 多个字典;
    2. 允许key是重复;
    3. 总是访问最高优先级字典中的关键字;
    4. 不需要改变key对应的value;
    5. 字典频繁的创建和更新已经造成巨大的性能问题,希望改善性能问题;

    Counter

    这是一个继承dict的子类,专门用来做计数器,dict中的方法这里同样适用。

    特有方法解释
    init初始化,参数为可迭代对象即可
    elememts返回一个生成器,其键值以无序的方式返回,并且只有值大于1的键值对才会返回
    most_common返回值最大的键值对,参数指定返回前多少个
    subtract减法,调用者的值发生改变
    update加法,调用者的值发生改变
    []返回键对应的值,如果键不存在,那么返回0
    +加法,返回一个新的counter对象,如果前面不存在,则默认加上一个对应键,值为0的counter
    -减法,返回一个新的counter对象,如果前面不存在,则默认用对应键,值为0的counter来减,其中值正数会变负数,负数变为正数
    &min操作,取相对应的键的最小值,返回一个新的counter对象
    max操作,取相对应的键的最大值,返回一个新的counter对象

    其中数学运算如果其中一方的不存在,则会默认创建对应键,值为0的键值对。

    from collections import Counter
    # init
    # 可迭代
    counter = Counter("accab")  # Counter({'a': 2, 'c': 2, 'b': 1})
    counter2 = Counter([1,2,3,4])  # Counter({1: 1, 2: 1, 3: 1, 4: 1})
    counter5 = Counter([('a',3),('b', 2)])  # Counter({('a', 3): 1, ('b', 2): 1})
    # 字典
    counter3 = Counter({'a': 1, 'b': 2, 'a': 3})  # Counter({'a': 3, 'b': 2})
    counter4 = Counter(a=1, b=2, c=1)  # Counter({'b': 2, 'a': 1, 'c': 1})
    # elements
    # 键值以无序的方式返回,并且只返回值大于等于1的键值对
    elememts = counter.elements()
    print([x for x in elememts])  # ['a', 'a', 'c', 'c', 'b']
    # 为空是因为elements是generator
    print(sorted(elememts))  # []
    # most_common
    # 键值以无序的方式返回
    print(counter.most_common(1))  # [('a', 2)]
    print(counter.most_common())  # [('a', 2), ('c', 2), ('b', 1)]
    # update
    # 单纯是增加的功能,而不是像dict.update()中的替换一样
    counter.update("abb")
    print(counter)  # Counter({'a': 3, 'b': 3, 'c': 2})
    # subtract
    counter.subtract(Counter("accc"))
    print(counter)  # Counter({'b': 3, 'a': 2, 'c': -1})
    print([x for x in counter.elements()])  # ['a', 'a', 'b', 'b', 'b']
    # get
    # 键不存在则返回0,但是不会加入到counter键值对中
    print(counter['d'])
    print(counter)  # Counter({'b': 3, 'a': 2, 'c': -1})
    del counter['d']
    # 还可以使用数学运算
    c = Counter(a=3, b=1)
    d = Counter(a=1, b=2)
    # add two counters together:  c[x] + d[x]
    print(c + d)  # Counter({'a': 4, 'b': 3})
    # subtract (keeping only positive counts)
    print(c - d)  # Counter({'a': 2})
    # # intersection:  min(c[x], d[x])
    print(c & d) # Counter({'a': 1, 'b': 1})
    # union:  max(c[x], d[x])
    print(c | d)  # Counter({'a': 3, 'b': 2})
    # 一元加法和减法
    c = Counter(a=3, b=-1)
    # 只取正数
    print(+c)  # Counter({'a': 3})
    print(-c)  # Counter({'b': 1})
    

    deque

    由于deque同样能够提供列表相关的函数,所以其和列表相同的函数则不再赘述,这里比较独特的是和left相关的函数以及rotate函数。

    from collections import deque
    # 从尾部进入,从头部弹出,保证长度为5
    dq1 = deque('abcdefg', maxlen=5)
    print(dq1)  # ['c', 'd', 'e', 'f', 'g']
    print(dq1.maxlen)  # 5
    # 从左端入列
    dq1.appendleft('q')
    print(dq1)  # ['q', 'c', 'd', 'e', 'f']
    # 从左端入列
    dq1.extendleft('abc')
    print(dq1)  # ['c', 'b', 'a', 'q', 'c']
    # 从左端出列并且返回
    dq1.popleft()  # c
    print(dq1)  # ['b', 'a', 'q', 'c']
    # 将队头n个元素进行右旋
    dq1.rotate(2)
    print(dq1)  # ['q', 'c', 'b', 'a']
    # 将队尾两个元素进行左旋
    dq1.rotate(-2)
    print(dq1)  # ['b', 'a', 'q', 'c']
    def tail(filename, n=10):
        'Return the last n lines of a file'
        with open(filename) as f:
            return deque(f, n)
    def delete_nth(d, n):
        """
        实现队列切片和删除,pop之后再放会原处
        :param d: deque
        :param n: int
        :return:
        """
        d.roatte(-n)
        d.popleft()
        d.rotate(n)
    

    OrderedDict

    OrderedDict提供了一个有序字典,可以使用在遍历的时候根据相应的顺序进行输出,因为在dict中它的item是以任意顺序进行输出的。

    注意初始化的时候和在插入的话都根据插入顺序进行排序,而不是根据key进行排序。

    from collections import OrderedDict
    items = {'c': 3, 'b': 2, 'a': 1}
    regular_dict = dict(items)
    ordered_dict = OrderedDict(items)
    print(regular_dict)  # {'c': 3, 'b': 2, 'a': 1}
    print(ordered_dict)  # [('c', 3), ('b', 2), ('a', 1)]
    # 按照插入顺序进行排序而不是
    ordered_dict['f'] = 4
    ordered_dict['e'] = 5
    print(ordered_dict)  # [('c', 3), ('b', 2), ('a', 1), ('f', 4), ('e', 5)]
    # 把最近加入的删除
    print(ordered_dict.popitem(last=True))  # ('e', 5)
    # 按照加入的顺序删除
    print(ordered_dict.popitem(last=False))  # ('c', 3)
    print(ordered_dict)  # [('b', 2), ('a', 1), ('f', 4)]
    # 移动到末尾
    ordered_dict.move_to_end('b', last=True)
    print(ordered_dict)  # [('a', 1), ('f', 4), ('b', 2)]
    # 移动到开头
    ordered_dict.move_to_end('b', last=False)
    print(ordered_dict)  # [('b', 2), ('a', 1), ('f', 4)]
    ordered_dict['a'] = 3
    # 说明更改值并不会影响加入顺序
    print(ordered_dict.popitem(last=True))  # ('f', 4)
    

    提供了字典的功能,又保证了顺序。

    namedtuple

    如果我们想要在tuple中使用名字的参数,而不是位置,namedtuple提供这么一个创建名称tuple的机会。

    from collections import namedtuple
    Point = namedtuple('Point', ['x', 'y'])
    p = Point(10, y=20)
    print(p)  # Point(x=10, y=20)
    print(p.x + p.y)  # 30
  • 相关阅读:
    cmd输出的日志里有中文乱码的解决办法
    自定义控件ToggleButton滑动开关
    移除指定位置的jsonarray
    设置Listview不滚动
    Volley框架学习
    LoaderManager的使用
    Activity获取Fragment的值
    Fragment和Fragment进行数据传递
    Fragmet的学习
    android ListView上拉加载更多
  • 原文地址:https://www.cnblogs.com/George1994/p/7204880.html
Copyright © 2011-2022 走看看