zoukankan      html  css  js  c++  java
  • poj 2104 K-th Number (划分树)

    K-th Number
    Time Limit: 20000MS   Memory Limit: 65536K
    Total Submissions: 68467   Accepted: 24208
    Case Time Limit: 2000MS

    Description

    You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
    That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?"
    For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

    Input

    The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000).
    The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
    The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

    Output

    For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

    Sample Input

    7 3
    1 5 2 6 3 7 4
    2 5 3
    4 4 1
    1 7 3

    Sample Output

    5
    6
    3

    Hint

    This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

    PS:求指定区域内第K大的数

    C/C++:

     1 #include <map>
     2 #include <queue>
     3 #include <cmath>
     4 #include <vector>
     5 #include <string>
     6 #include <cstdio>
     7 #include <cstring>
     8 #include <climits>
     9 #include <iostream>
    10 #include <algorithm>
    11 #define INF 0x3f3f3f3f
    12 using namespace std;
    13 const int MAXN = 1e5 + 10;
    14 int a, b, k, N, M, Sorted[MAXN], Tree[30][MAXN], Toleft[30][MAXN];
    15 
    16 void Build(int Lef, int Rig, int dep)
    17 {
    18     if (Lef == Rig) return;
    19     int Mid = (Lef + Rig) >> 1;
    20     int Same = Mid - Lef + 1;
    21     for (int i = Lef; i <= Rig; ++ i)
    22         if (Tree[dep][i] < Sorted[Mid]) -- Same;
    23     int Lpos = Lef, Rpos = Mid + 1;
    24     for (int i = Lef; i <= Rig; ++ i)
    25     {
    26         if (Tree[dep][i] < Sorted[Mid])
    27             Tree[dep + 1][Lpos ++] = Tree[dep][i];
    28         else if (Tree[dep][i] == Sorted[Mid])
    29         {
    30             Tree[dep + 1][Lpos ++] = Tree[dep][i];
    31             -- Same;
    32         }
    33         else
    34             Tree[dep + 1][Rpos ++] = Tree[dep][i];
    35         Toleft[dep][i] = Toleft[dep][Lef - 1] + Lpos - Lef;
    36     }
    37     Build(Lef, Mid, dep + 1);
    38     Build(Mid + 1, Rig, dep + 1);
    39 }
    40 
    41 int Query(int Lef, int Rig, int l, int r, int dep, int k)
    42 {
    43     if (l == r) return Tree[dep][l];
    44     int Mid = (Lef + Rig) >> 1;
    45     int Cnt = Toleft[dep][r] - Toleft[dep][l - 1];
    46     if (Cnt >= k)
    47     {
    48         int newL = Lef + Toleft[dep][l - 1] - Toleft[dep][Lef - 1];
    49         int newR = newL + Cnt - 1;
    50         return Query(Lef, Mid, newL, newR, dep + 1, k);
    51     }
    52     else
    53     {
    54         int newR = r + Toleft[dep][Rig] - Toleft[dep][r];
    55         int newL = newR - (r - l - Cnt);
    56         return Query(Mid + 1, Rig, newL, newR, dep + 1, k - Cnt);
    57     }
    58 }
    59 
    60 int main()
    61 {
    62     while (~scanf("%d%d", &N, &M))
    63     {
    64         for (int i = 1; i <= N; ++ i)
    65         {
    66             scanf("%d", &Tree[0][i]);
    67             Sorted[i] = Tree[0][i];
    68         }
    69         sort(Sorted + 1, Sorted + 1 + N);
    70         Build(1, N, 0);
    71         for (int i = 1; i <= M; ++ i)
    72         {
    73             scanf("%d%d%d", &a, &b, &k);
    74             printf("%d
    ", Query(1, N, a, b, 0, k));
    75         }
    76     }
    77 }
  • 相关阅读:
    java Thread之ThreadLocal(线程局部变量)
    java设计模式之接口隔离原则(ISP)
    java设计模式之开放关闭原则(OCP)
    java设计模式之迪米特法则(LoD)
    java设计模式之单一职责原则(SRP)
    android点滴(25)之 originalpackage
    VC 注册表操作
    java设计模式之依赖倒置原则(DIP)
    DFT 离散傅里叶变换 与 补零运算
    序列循环移位
  • 原文地址:https://www.cnblogs.com/GetcharZp/p/9551507.html
Copyright © 2011-2022 走看看