zoukankan      html  css  js  c++  java
  • poj 2104 K-th Number (划分树)

    K-th Number
    Time Limit: 20000MS   Memory Limit: 65536K
    Total Submissions: 68467   Accepted: 24208
    Case Time Limit: 2000MS

    Description

    You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
    That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?"
    For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

    Input

    The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000).
    The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
    The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

    Output

    For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

    Sample Input

    7 3
    1 5 2 6 3 7 4
    2 5 3
    4 4 1
    1 7 3

    Sample Output

    5
    6
    3

    Hint

    This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

    PS:求指定区域内第K大的数

    C/C++:

     1 #include <map>
     2 #include <queue>
     3 #include <cmath>
     4 #include <vector>
     5 #include <string>
     6 #include <cstdio>
     7 #include <cstring>
     8 #include <climits>
     9 #include <iostream>
    10 #include <algorithm>
    11 #define INF 0x3f3f3f3f
    12 using namespace std;
    13 const int MAXN = 1e5 + 10;
    14 int a, b, k, N, M, Sorted[MAXN], Tree[30][MAXN], Toleft[30][MAXN];
    15 
    16 void Build(int Lef, int Rig, int dep)
    17 {
    18     if (Lef == Rig) return;
    19     int Mid = (Lef + Rig) >> 1;
    20     int Same = Mid - Lef + 1;
    21     for (int i = Lef; i <= Rig; ++ i)
    22         if (Tree[dep][i] < Sorted[Mid]) -- Same;
    23     int Lpos = Lef, Rpos = Mid + 1;
    24     for (int i = Lef; i <= Rig; ++ i)
    25     {
    26         if (Tree[dep][i] < Sorted[Mid])
    27             Tree[dep + 1][Lpos ++] = Tree[dep][i];
    28         else if (Tree[dep][i] == Sorted[Mid])
    29         {
    30             Tree[dep + 1][Lpos ++] = Tree[dep][i];
    31             -- Same;
    32         }
    33         else
    34             Tree[dep + 1][Rpos ++] = Tree[dep][i];
    35         Toleft[dep][i] = Toleft[dep][Lef - 1] + Lpos - Lef;
    36     }
    37     Build(Lef, Mid, dep + 1);
    38     Build(Mid + 1, Rig, dep + 1);
    39 }
    40 
    41 int Query(int Lef, int Rig, int l, int r, int dep, int k)
    42 {
    43     if (l == r) return Tree[dep][l];
    44     int Mid = (Lef + Rig) >> 1;
    45     int Cnt = Toleft[dep][r] - Toleft[dep][l - 1];
    46     if (Cnt >= k)
    47     {
    48         int newL = Lef + Toleft[dep][l - 1] - Toleft[dep][Lef - 1];
    49         int newR = newL + Cnt - 1;
    50         return Query(Lef, Mid, newL, newR, dep + 1, k);
    51     }
    52     else
    53     {
    54         int newR = r + Toleft[dep][Rig] - Toleft[dep][r];
    55         int newL = newR - (r - l - Cnt);
    56         return Query(Mid + 1, Rig, newL, newR, dep + 1, k - Cnt);
    57     }
    58 }
    59 
    60 int main()
    61 {
    62     while (~scanf("%d%d", &N, &M))
    63     {
    64         for (int i = 1; i <= N; ++ i)
    65         {
    66             scanf("%d", &Tree[0][i]);
    67             Sorted[i] = Tree[0][i];
    68         }
    69         sort(Sorted + 1, Sorted + 1 + N);
    70         Build(1, N, 0);
    71         for (int i = 1; i <= M; ++ i)
    72         {
    73             scanf("%d%d%d", &a, &b, &k);
    74             printf("%d
    ", Query(1, N, a, b, 0, k));
    75         }
    76     }
    77 }
  • 相关阅读:
    LeetCode153 Find Minimum in Rotated Sorted Array. LeetCode162 Find Peak Element
    LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word
    LeetCode172 Factorial Trailing Zeroes. LeetCode258 Add Digits. LeetCode268 Missing Number
    LeetCode191 Number of 1 Bits. LeetCode231 Power of Two. LeetCode342 Power of Four
    LeetCode225 Implement Stack using Queues
    LeetCode150 Evaluate Reverse Polish Notation
    LeetCode125 Valid Palindrome
    LeetCode128 Longest Consecutive Sequence
    LeetCode124 Binary Tree Maximum Path Sum
    LeetCode123 Best Time to Buy and Sell Stock III
  • 原文地址:https://www.cnblogs.com/GetcharZp/p/9551507.html
Copyright © 2011-2022 走看看