A:8min才过???

#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define int long long char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } signed main() { /*#ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("a.out","w",stdout); const char LL[]="%I64d "; #endif*/ char a=getc(),b=getc(); for (int i=0;i<5;i++) { char x=getc(),y=getc(); if (a==x||b==y) {cout<<"YES";return 0;} } cout<<"NO"; return 0; //NOTICE LONG LONG!!!!! }
B:WA了一发???

#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define int long long #define N 20 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N]; bool flag=0; void dfs(int k,int s) { if (flag) return; if (k>n&&s==0) {flag=1;return;} if (k>n) return; dfs(k+1,(s+a[k])%360); dfs(k+1,(s-a[k]+360)%360); } signed main() { /*#ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("a.out","w",stdout); const char LL[]="%I64d "; #endif*/ n=read(); for (int i=1;i<=n;i++) a[i]=read(); dfs(1,0); if (flag) cout<<"YES";else cout<<"NO"; return 0; //NOTICE LONG LONG!!!!! }
C:多余匹配括号去掉后设右括号个数为x,左括号个数为y,则匹配的括号序列对要求y1+y2=0 x1=0 y1+x2=0,瞎贪贪就行了。RE了一发40min才过???

#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<vector> using namespace std; #define int long long #define N 500010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,ans; char s[N]; vector<int> b[N<<1]; struct data { int x,y; }a[N]; signed main() { #ifndef ONLINE_JUDGE freopen("c.in","r",stdin); freopen("c.out","w",stdout); const char LL[]="%I64d "; #endif n=read(); for (int i=1;i<=n;i++) { scanf("%s",s+1);int m=strlen(s+1); int cnt=0; for (int j=1;j<=m;j++) { if (s[j]=='(') cnt++;else cnt--; a[i].x=min(a[i].x,cnt); } a[i].y=cnt; b[a[i].y+N].push_back(a[i].x); } // y1+y2=0 y1+x2>=0 for (int i=0;i<(N<<1);i++) sort(b[i].begin(),b[i].end()); int cnt=0; for (int i=0;i<b[N].size();i++) if (b[N][i]>=0) cnt++; ans=cnt/2; for (int i=N+1;i<(N<<1);i++) { int head=0,tail=b[i].size();tail--; while (head<b[N-(i-N)].size()&&tail>=0&&b[i][tail]>=0) { while (head<b[N-(i-N)].size()&&i-N+b[N-(i-N)][head]<0) head++; if (head>=b[N-(i-N)].size()) break; tail--;head++;ans++; } } cout<<ans; return 0; //NOTICE LONG LONG!!!!! }
D:暴力dp,对每个质因子做即可。看错题了一发???

#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define P 1000000007 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } ll n,prime[100]; int m,cnt[100],a[100],f[100][100],g[10010][100],inv[110],t,tot=1,ans=0; int ksm(int a,int k) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } void dfs(int k,ll s,ll u) { if (k>t) {ans=(ans+s%P*u)%P;return;} for (a[k]=0;a[k]<=cnt[k];a[k]++) { dfs(k+1,s,u*f[k][a[k]]%P); s*=prime[k]; } } signed main() { #ifndef ONLINE_JUDGE freopen("d.in","r",stdin); freopen("d.out","w",stdout); const char LL[]="%I64d "; #endif cin>>n>>m; for (int i=2;1ll*i*i<=n;i++) if (n%i==0) { t++;prime[t]=i; while (n%i==0) cnt[t]++,n/=i; } if (n>1) prime[++t]=n,cnt[t]=1; for (int i=1;i<=100;i++) inv[i]=ksm(i,P-2); for (int i=1;i<=t;i++) { memset(g[0],0,sizeof(g[0]));g[0][cnt[i]]=1; for (int j=1;j<=m;j++) { g[j][cnt[i]+1]=0; for (int k=cnt[i];k>=0;k--) g[j][k]=(g[j][k+1]+1ll*g[j-1][k]*inv[k+1])%P; } for (int k=0;k<=cnt[i];k++) f[i][k]=g[m][k]; } //for (int i=1;i<=t;i++) tot=1ll*tot*C[cnt[i]+m][cnt[i]]%P;tot=inv(tot); dfs(1,1,1); //cout<<1ll*ans*tot%P; cout<<ans; return 0; //NOTICE LONG LONG!!!!! }
F感觉非常神仙???过了很长时间才明白不是什么乱七八糟的线段树合并而是bitset啊???但还是不会啊???怎么这么多人过啊???叉人还被抢啊???自闭了啊???
result:rank 422 rating +12
F:显然只需要维护集合中每个数出现次数的奇偶性,考虑使用bitset。3操作非常难实现,可以考虑改为维护每个数的倍数的奇偶性,这样就相当于and了。然后考虑怎么以这种方式统计答案。使用莫比乌斯函数容斥即可。好思博啊怎么我不会啊???

#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<bitset> using namespace std; #define N 100010 #define V 7001 bitset<V> a[N],b[V]; int n,m,mobius[V]; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int main() { #ifndef ONLINE_JUDGE freopen("f.in","r",stdin); freopen("f.out","w",stdout); #endif n=read(),m=read(); for (int i=2;i<V;i++) for (int j=i*i;j<V;j+=i*i) mobius[j]=1; for (int i=1;i<V;i++) mobius[i]^=1; for (int i=1;i<V;i++) for (int j=i;j<V;j+=i) b[i][j]=mobius[j/i]; while (m--) { int op=read(); if (op==1) { int x=read(),y=read();a[x]=0; for (int i=1;i*i<=y;i++) if (y%i==0) { a[x][i]=1; if (i*i!=y) a[x][y/i]=1; } } if (op==2) { int z=read(),x=read(),y=read(); a[z]=a[x]^a[y]; } if (op==3) { int z=read(),x=read(),y=read(); a[z]=a[x]&a[y]; } if (op==4) { int x=read(),y=read(); printf("%d",(a[x]&b[y]).count()&1); } } return 0; } //f[x]=Σcnt[d] d|x //
G:先考虑k=1时怎么做。设f[i][1]为i作为斯坦纳树(暂且就这么叫)的根(该点不一定被选中)时所有方案边数之和,f[i][0]为上述方案数;g[i][1]为i作为斯坦纳树的根(但目前选中的点的斯坦纳树实际上并不将其包含,且选中点集不为空)时所有方案边数之和,g[i][0]为上述方案数。转移考虑f必须是选中根或至少选中两棵子树,g只选中一棵子树。f可以不考虑限制后再减掉g。这个沙雕dp已经想了我2h了。
然后考虑怎么求k次方。容易想到在dp中记录各次方,(事实上刚才的dp中就记录了0次方和1次方)具体转移由二项式定理即可得,注意细节。那么暴力复杂度是O(nk2),NTT优化后可以做到O(nklogk)。复杂度看上去就很不靠谱,并且甚至题就没给NTT模数。(但还是有神仙用NTT过掉了)

#include<bits/stdc++.h> using namespace std; #define P 998244353 //当然原题的模数是1e9+7 #define N 100010 #define M 210 int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,p[N],f[N][M],g[N][M],size[N],C[M][M],fac[M],inv[M],p2[N],tmp[M],a[1<<9],b[1<<9],r[1<<9],t,ans,inv3,inv512; struct data{int to,nxt; }edge[N<<1]; void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} void inc(int &x,int y){x+=y;if (x>=P) x-=P;} int ksm(int a,int k) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } int INV(int a){return ksm(a,P-2);} void DFT(int *a,int n,int g) { for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]); for (int i=2;i<=n;i<<=1) { int wn=ksm(g,(P-1)/i); for (int j=0;j<n;j+=i) { int w=1; for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P) { int x=a[k],y=1ll*w*a[k+(i>>1)]%P; a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P; } } } } void mul(int *a,int *b) { DFT(a,1<<9,3),DFT(b,1<<9,3); for (int i=0;i<(1<<9);i++) a[i]=1ll*a[i]*b[i]%P; DFT(a,1<<9,inv3); for (int i=0;i<(1<<9);i++) a[i]=1ll*a[i]*inv512%P; } void dfs(int k,int from) { f[k][0]=2;size[k]=1; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from) { dfs(edge[i].to,k); memset(a,0,sizeof(a)),memset(b,0,sizeof(b)); for (int j=0;j<=m;j++) a[j]=inv[j],b[j]=1ll*inv[j]*(f[edge[i].to][j]+g[edge[i].to][j])%P; mul(a,b);for (int j=0;j<=m;j++) tmp[j]=1ll*a[j]*fac[j]%P; for (int j=0;j<=m;j++) inc(g[k][j],tmp[j]); memset(a,0,sizeof(a));memset(b,0,sizeof(b)); for (int j=0;j<=m;j++) a[j]=1ll*inv[j]*f[k][j]%P,b[j]=1ll*inv[j]*tmp[j]%P; mul(a,b);for (int j=0;j<=m;j++) tmp[j]=1ll*a[j]*fac[j]%P; for (int j=1;j<=m;j++) inc(f[k][j],tmp[j]); f[k][0]=p2[size[k]+=size[edge[i].to]]; } for (int j=0;j<=m;j++) inc(f[k][j],P-g[k][j]); f[k][0]--; } int main() { #ifndef ONLINE_JUDGE freopen("g.in","r",stdin); freopen("g.out","w",stdout); #endif n=read(),m=read();inv3=INV(3),inv512=INV(512); C[0][0]=1; for (int i=1;i<=m;i++) { C[i][0]=C[i][i]=1; for (int j=1;j<i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%P; } fac[0]=1;for (int i=1;i<=m;i++) fac[i]=1ll*fac[i-1]*i%P; inv[0]=inv[1]=1;for (int i=2;i<=m;i++) inv[i]=P-1ll*inv[P%i]*(P/i)%P; for (int i=2;i<=m;i++) inv[i]=1ll*inv[i-1]*inv[i]%P; for (int i=0;i<(1<<9);i++) r[i]=(r[i>>1]>>1)|(i&1)*(1<<8); for (int i=1;i<n;i++) { int x=read(),y=read(); addedge(x,y),addedge(y,x); } p2[0]=1;for (int i=1;i<=n;i++) p2[i]=(p2[i-1]<<1)%P; dfs(1,1); for (int i=1;i<=n;i++) inc(ans,f[i][m]); cout<<ans; return 0; }
换一种思路。https://www.cnblogs.com/Gloid/p/9553291.html 我们想起来还做过这么个题。搬上同样的做法即可。然后我发现我不会转移了,就非常开心的弃掉了。
E:见官方题解及讨论区一楼补充。

#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<vector> using namespace std; #define ll long long #define N 100010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int T,n,a[N],b[N],f[N],q[N],cnt; bool flag[N]; vector<int> ans[N],tmp[N]; int solve(int op) { for (int i=1;i<=n;i++) q[i]=0; int tail=0;tmp[0].clear(); for (int i=1;i<=n;i++) { int l=0,r=tail,ans=0; while (l<=r) { int mid=l+r>>1; if (a[i]>a[q[mid]]) ans=mid,l=mid+1; else r=mid-1; } f[i]=q[ans];ans++;if (ans>tail) {tail++;if (op) tmp[tail].clear();} q[ans]=i;if (op) tmp[ans].push_back(a[i]); } if (op) for (int i=1;i<=tail;i++) ans[++cnt]=tmp[i]; return tail; } int main() { #ifndef ONLINE_JUDGE freopen("e.in","r",stdin); freopen("e.out","w",stdout); const char LL[]="%I64d "; #else const char LL[]="%lld "; #endif T=read(); while (T--) { n=read(); for (int i=1;i<=n;i++) a[i]=read(); cnt=0; while (n) { int LIS=solve(0),end_LIS=q[LIS]; for (int i=1;i<=n;i++) flag[i]=0; if ((1ll*LIS*(LIS+1)>>1)>n) { cnt++;ans[cnt].clear(); int x=end_LIS; while (x) { ans[cnt].push_back(a[x]); flag[x]=1;x=f[x]; } reverse(ans[cnt].begin(),ans[cnt].end()); int m=0; for (int i=1;i<=n;i++) if (!flag[i]) b[++m]=a[i]; n=m;for (int i=1;i<=n;i++) a[i]=b[i]; } else {solve(1);break;} } printf("%d ",cnt); for (int i=1;i<=cnt;i++) { printf("%d ",ans[i].size()); for (int j=0;j<ans[i].size();j++) printf("%d ",ans[i][j]); printf(" "); } } return 0; }