S(i,j)=Σ(-1)j-k(1/j!)·C(j,k)·ki=Σ(-1)j-k·ki/k!/(j-k)!。原式=ΣΣ(-1)j-k·ki·2j·j!/k!/(j-k)! (i,j=0~n)。可以发现i只在式中出现了一次且与j不相关,如果对每个k求出其剩余部分的答案,各自乘一下即可。而剩余部分显然是一个卷积。
#include<bits/stdc++.h> using namespace std; int getbit(){char c=getchar();while (c<'0'||c>'9') c=getchar();return c^48;} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } #define N 100010 #define P 998244353 #define inv3 332748118 int n,r[N<<2],fac[N],inv[N],f[N<<2],g[N<<2]; int ksm(int a,int k) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;} void DFT(int *a,int n,int g) { for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]); for (int i=2;i<=n;i<<=1) { int wn=ksm(g,(P-1)/i); for (int j=0;j<n;j+=i) { int w=1; for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P) { int x=a[k],y=1ll*w*a[k+(i>>1)]%P; a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P; } } } } void mul(int *f,int *g) { int t=1;while (t<=(n<<1)) t<<=1; for (int i=0;i<t;i++) r[i]=(r[i>>1]>>1)|(i&1)*(t>>1); DFT(f,t,3),DFT(g,t,3); for (int i=0;i<t;i++) f[i]=1ll*f[i]*g[i]%P; DFT(f,t,inv3); int u=ksm(t,P-2); for (int i=0;i<t;i++) f[i]=1ll*f[i]*u%P; } int main() { #ifndef ONLINE_JUDGE freopen("b.in","r",stdin); freopen("b.out","w",stdout); const char LL[]="%I64d "; #else const char LL[]="%lld "; #endif n=read(); fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P; inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P; for (int i=2;i<=n;i++) inv[i]=1ll*inv[i]*inv[i-1]%P; for (int i=0;i<=n;i++) g[i]=1ll*ksm(2,i)*fac[i]%P;reverse(g,g+n+1); for (int i=0;i<=n;i++) if (i&1) f[i]=P-inv[i];else f[i]=inv[i]; mul(f,g); reverse(f,f+n+1); for (int i=0;i<=n;i++) f[i]=1ll*f[i]*inv[i]%P; f[1]=1ll*f[1]*(n+1)%P; for (int k=2;k<=n;k++) f[k]=1ll*f[k]*(ksm(k,n+1)-1)%P*ksm(k-1,P-2)%P; int ans=0;for (int k=0;k<=n;k++) ans=(ans+f[k])%P; cout<<ans; return 0; }