zoukankan      html  css  js  c++  java
  • Codeforces Round #429 Div. 1

      A:甚至连题面都不用仔细看,看一下样例就知道是要把大的和小的配对了。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 200010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,id[N],ans[N];
    struct data
    {
    	int x,y,i;
    	bool operator <(const data&a)  const
    	{
    		return y<a.y;
    	}
    }a[N];
    bool cmp(const data&a,const data&b)
    {
    	return a.x>b.x;
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read();
    	for (int i=1;i<=n;i++) a[i].x=read();
    	for (int i=1;i<=n;i++) a[i].y=read(),a[i].i=i;
    	sort(a+1,a+n+1);
    	for (int i=1;i<=n;i++) id[i]=a[i].i;//��i����id[i] 
    	sort(a+1,a+n+1,cmp);
    	for (int i=1;i<=n;i++) ans[id[i]]=a[i].x;
    	for (int i=1;i<=n;i++) printf("%d ",ans[i]);
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      B:vp时拿命想都不会,结果一看sol发现idea还很大一部分是我自己造过的题,简直自闭。显然度数之和应该是偶数,先给不要求度数的随便分配一下满足要求。然后找一棵生成树,自底向上只选树边以满足度数要求即可。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 300010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,a[N],p[N],ans[N],u,t;
    bool flag[N];
    struct data{int to,nxt;
    }edge[N<<1];
    void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
    void dfs(int k)
    {
    	flag[k]=1;
    	for (int i=p[k];i;i=edge[i].nxt)
    	if (!flag[edge[i].to])
    	{
    		dfs(edge[i].to);
    		if (a[edge[i].to]) ans[++u]=(i-1)/2+1,a[k]^=1;
    	}
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read(),m=read();int cnt=0,cnt2=0;
    	for (int i=1;i<=n;i++) a[i]=read(),cnt+=(a[i]==-1),cnt2+=(a[i]==1);
    	if (cnt==0&&(cnt2&1)) {cout<<-1;return 0;}
    	for (int i=1;i<=n;i++) if (a[i]==-1) if (cnt2&1) cnt2=0,a[i]=1;else a[i]=0;
    	for (int i=1;i<=m;i++)
    	{
    		int x=read(),y=read();
    		addedge(x,y),addedge(y,x);
    	}
    	dfs(1);
    	cout<<u<<endl;
    	for (int i=1;i<=u;i++) printf("%d ",ans[i]);
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      C:我省去年初中组直接把这个题搬过来压轴,很久以前口胡过然而并没有写,于是vp时就去搬了份代码交了()。

      显然可以先把每个数的平方因子去掉。然后即相当于要求相邻两数存在不同的质因子。也就相当于要求相邻两数不同。于是把所有数排个序,从小到大考虑每种数,设f[i][j][k]为前i个数当前有j对相同数相邻且其中有k对和当前数相同,转移显然。

      D:显然满足条件的数一定是区间内出现次数前k大的。考虑回滚莫队,维护一下出现次数区间前5大的数即可。稍微卡卡常就行了。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int read()
    {
        int x=0,f=1;char c=getchar();
        while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
        while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
        return x*f;
    }
    #define N 300010
    #define ll long long
    int n,m,a[N],b[N],cnt[N],mx[6],ans[N],tmp_mx[6];
    struct data
    {
        int x,y,k,i,u;
        bool operator <(const data&a) const
        {
            return k<a.k||k==a.k&&y<a.y;
        }
    }q[N];
    void ins(int qwq)
    {
    	if (cnt[qwq]<cnt[mx[5]]) return;
    	int p=0;
    	for (int k=1;k<=5;k++) if (mx[k]==qwq) {p=k;break;}
    	if (!p) mx[5]=qwq,p=5;
    	while (p>1&&cnt[mx[p]]>cnt[mx[p-1]]) swap(mx[p],mx[p-1]),p--;
    }
    int main()
    {
    #ifndef ONLINE_JUDGE
        freopen("b.in","r",stdin);
        freopen("b.out","w",stdout);
        const char LL[]="%I64d
    ";
    #else
        const char LL[]="%lld
    ";
    #endif
        n=read(),m=read();
        for (int i=1;i<=n;i++) a[i]=read();
        int block=sqrt(n);
        for (int i=1;i<=m;i++) q[i].x=read(),q[i].y=read(),q[i].u=read(),q[i].k=q[i].x/block,q[i].i=i;
        sort(q+1,q+m+1);
        for (int i=1;i<=m;i++)
        {
        	for (int k=1;k<=5;k++) mx[k]=0;
            int t=i;while (t<m&&q[t+1].k==q[i].k) t++;
            while (i<=t&&q[i].y<(q[i].k+1)*block)
            {
                for (int j=q[i].x;j<=q[i].y;j++)
                {
                    cnt[a[j]]++;
                    ins(a[j]);
                }
                ans[q[i].i]=N;
                for (int k=1;k<=5;k++) if (1ll*cnt[mx[k]]*q[i].u>q[i].y-q[i].x+1) ans[q[i].i]=min(ans[q[i].i],mx[k]);
                if (ans[q[i].i]==N) ans[q[i].i]=-1;
                for (int j=q[i].x;j<=q[i].y;j++) cnt[a[j]]--;
                i++;
        		for (int k=1;k<=5;k++) mx[k]=0;
            }
            int r=(q[i].k+1)*block-1;
            for (int j=i;j<=t;j++)
            {
                while (r<q[j].y)
                {
                    cnt[a[++r]]++;
                    ins(a[r]);
                }
            	for (int k=1;k<=5;k++) tmp_mx[k]=mx[k];
                for (int k=(q[i].k+1)*block-1;k>=q[j].x;k--)
                {
                    cnt[a[k]]++;
                    ins(a[k]);
                }
                ans[q[j].i]=N;
                for (int k=1;k<=5;k++) if (1ll*cnt[mx[k]]*q[j].u>q[j].y-q[j].x+1) ans[q[j].i]=min(ans[q[j].i],mx[k]);
                if (ans[q[j].i]==N) ans[q[j].i]=-1;
                for (int k=(q[i].k+1)*block-1;k>=q[j].x;k--) cnt[a[k]]--;
                for (int k=1;k<=5;k++) mx[k]=tmp_mx[k];
            }
            r=(q[i].k+1)*block-1;
            for (int j=i;j<=t;j++)
            while (r<q[j].y) cnt[a[++r]]=0;
            i=t;
        }
        for (int i=1;i<=m;i++) printf("%d
    ",ans[i]);
        return 0;
    }
    

      事实上直接拿棵主席树在上面暴力查询复杂度大约就是O(knlogn)。具体并不会证。感觉很对就行了。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 300010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,root[N],a[N],cnt;
    struct data{int l,r,x;
    }tree[N<<5];
    void ins(int &k,int l,int r,int x)
    {
    	tree[++cnt]=tree[k];k=cnt;tree[k].x++;
    	if (l==r) return;
    	int mid=l+r>>1;
    	if (x<=mid) ins(tree[k].l,l,mid,x);
    	else ins(tree[k].r,mid+1,r,x);
    }
    int query(int x,int y,int l,int r,int u)
    {
    	if (tree[y].x-tree[x].x<=u) return -1;
    	if (l==r) return l;
    	int mid=l+r>>1;
    	int v=query(tree[x].l,tree[y].l,l,mid,u);
    	if (v==-1) return query(tree[x].r,tree[y].r,mid+1,r,u);
    	else return v;
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read(),m=read();
    	for (int i=1;i<=n;i++) a[i]=read();
    	for (int i=1;i<=n;i++)
    	{
    		root[i]=root[i-1];
    		ins(root[i],1,n,a[i]);
    	}
    	for (int i=1;i<=m;i++)
    	{
    		int l=read(),r=read(),x=read();
    		printf("%d
    ",query(root[l-1],root[r],1,n,(r-l+1)/x));
    	}
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }

      E:因为用来异或的dist随祖先深度减小连续递增,考虑一个套路的对位运算的分块,即固定高位的前一半数字,不妨设令其去掉后9位的部分相同。那么即对于每个点,考虑其向上29个点作为一块。对于每一块,考虑以前一半数字建trie,叶子处存储ai^x的最大值,其中x是其与该块下端点的深度差,因为深度差的后9位对于该块每个点来说在所有需要用到该块的查询中都是一样的。这样预处理的复杂度是7*29*n。考虑查询,从查询点往上暴跳考虑每个块,如果块不完整显然暴力即可,否则先对前一半数字trie上按位贪心,贪完之后即可固定答案中点i的ai前一半数字,并且可以发现答案已经被预处理出来了。查询复杂度q*(29+n*7/29)。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 50010
    #define M 150010
    #define BLOCK 512
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,a[N],p[N],fa[N],fa512[N],deep[N],root[N],f[N][N/BLOCK+10],trie[N*256][2],t,cnt;
    struct data{int to,nxt;
    }edge[N<<1];
    void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
    void dfs(int k)
    {
    	for (int i=p[k];i;i=edge[i].nxt)
    	if (edge[i].to!=fa[k])
    	{
    		fa[edge[i].to]=k;
    		deep[edge[i].to]=deep[k]+1;
    		dfs(edge[i].to);
    	}
    }
    void ins(int &k,int x)
    {
    	if (!k) k=++cnt;
    	for (int i=k,j=6;j>=0;j--)
    	{
    		if (!trie[i][(x&(1<<j))>0]) trie[i][(x&(1<<j))>0]=++cnt;
    		i=trie[i][(x&(1<<j))>0];
    	}
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read(),m=read();
    	for (int i=1;i<=n;i++) a[i]=read();
    	for (int i=1;i<n;i++)
    	{
    		int x=read(),y=read();
    		addedge(x,y),addedge(y,x);
    	}
    	dfs(1);
    	for (int i=1;i<=n;i++)
    	if (deep[i]>=BLOCK)
    	{
    		fa512[i]=i;
    		for (int j=0;j<BLOCK;j++)
    		{
    			int x=fa512[i];
    			ins(root[i],a[x]>>9);
    			f[i][a[x]>>9]=max(f[i][a[x]>>9],a[x]^j);
    			fa512[i]=fa[fa512[i]];
    		}
    	}
    	for (int i=1;i<=m;i++)
    	{
    		int y=read(),x=read(),u=x,v=0,ans=0;
    		while (deep[u]-deep[y]>=BLOCK)
    		{
    			int w=0;
    			for (int k=root[u],j=6;j>=0;j--)
    			if (v&(1<<j))
    			{
    				if (trie[k][0]) k=trie[k][0],w=w<<1;
    				else k=trie[k][1],w=w<<1|1;
    			}
    			else
    			{
    				if (trie[k][1]) k=trie[k][1],w=w<<1|1;
    				else k=trie[k][0],w=w<<1;
    			}
    			ans=max(ans,f[u][w]^(v<<9));u=fa512[u];v++;
    		}
    		while (u!=y) ans=max(ans,a[u]^deep[x]-deep[u]),u=fa[u];
    		ans=max(ans,a[y]^deep[x]-deep[y]);
    		printf("%d
    ",ans);
    	}
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      

  • 相关阅读:
    Elasticsearch 6.x版本全文检索学习之数据建模
    Elasticsearch 6.x版本全文检索学习之集群调优建议
    Elasticsearch 6.x版本全文检索学习之聚合分析入门
    SpringCloud的入门学习之Eureka(高可用注册中心HA)构建Provider服务、Consumer服务
    SpringCloud的入门学习之Netflix-eureka(Eureka的集群版搭建)
    Elasticsearch 6.x版本全文检索学习之Search的运行机制
    ERP入门
    NoSQL数据库介绍
    傅立叶变换的物理意义
    电容的基础知识
  • 原文地址:https://www.cnblogs.com/Gloid/p/10503993.html
Copyright © 2011-2022 走看看