因为一大堆式子实在懒得写题解了。首先用prufer推出CF917D用到的结论,然后具体见前言不搭后语的注释。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<map> using namespace std; #define ll long long #define P 998244353 #define N 600010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,op,w,f[N][2],p[N],t; int a[N],b[N],c[N],d[N],A[N],B[N],fac[N],r[N]; struct data{int to,nxt; }edge[N<<1]; void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} map<int,int> qaq[N]; int ksm(int a,int k) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } int inv(int a){return ksm(a,P-2);} void inc(int &x,int y){x+=y;if (x>=P) x-=P;} void dfs(int k,int from) { f[k][0]=1; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from) { dfs(edge[i].to,k); f[k][0]=1ll*f[k][0]*(f[edge[i].to][0]+f[edge[i].to][1])%P; } f[k][1]=1ll*f[k][0]*w%P; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from) inc(f[k][1],1ll*f[k][0]*inv(f[edge[i].to][0]+f[edge[i].to][1])%P*f[edge[i].to][1]%P); } void DFT(int n,int *a,int g) { for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1); for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]); for (int i=2;i<=n;i<<=1) { int wn=ksm(g,(P-1)/i); for (int j=0;j<n;j+=i) { int w=1; for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P) { int x=a[k],y=1ll*w*a[k+(i>>1)]%P; a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P; } } } } void IDFT(int *a,int n) { DFT(n,a,inv(3)); int u=inv(n); for (int i=0;i<n;i++) a[i]=1ll*a[i]*u%P; } void mul(int *a,int *b,int n) { DFT(n,a,3),DFT(n,b,3); for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P; IDFT(a,n); } void Inv(int *a,int *b,int n) { if (n==1) {for (int i=0;i<t;i++) b[i]=0;b[0]=inv(a[0]);return;} Inv(a,b,n>>1); for (int i=0;i<n;i++) A[i]=a[i]; for (int i=n;i<(n<<1);i++) A[i]=0; n<<=1; DFT(n,A,3),DFT(n,b,3); for (int i=0;i<n;i++) b[i]=1ll*b[i]*(P+2-1ll*A[i]*b[i]%P)%P; IDFT(b,n); n>>=1; for (int i=n;i<(n<<1);i++) b[i]=0; } void trans(int *a,int *b,int n){for (int i=0;i<n-1;i++) b[i]=1ll*a[i+1]*(i+1)%P;} void dx(int *a,int *b,int n){b[0]=0;for (int i=1;i<n;i++) b[i]=1ll*a[i-1]*inv(i)%P;} void Ln(int *a,int t) { for (int i=0;i<t;i++) b[i]=c[i]=0; trans(a,c,t); Inv(a,b,t>>1); mul(c,b,t); dx(c,a,t); } void Exp(int *a,int *b,int n) { if (n==1) {b[0]=1;return;} Exp(a,b,n>>1); for (int i=0;i<(n>>1);i++) B[i]=b[i]; for (int i=(n>>1);i<n;i++) B[i]=0; Ln(B,n); for (int i=0;i<n;i++) B[i]=(a[i]-B[i]+P)%P; B[0]=(B[0]+1)%P; for (int i=n;i<(n<<1);i++) B[i]=0; mul(b,B,n<<1); for (int i=n;i<(n<<1);i++) b[i]=0; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj5475.in","r",stdin); freopen("bzoj5475.out","w",stdout); const char LL[]="%I64d "; #else const char LL[]="%lld "; #endif n=read(),m=read(),op=read(); if (op==0) { for (int i=1;i<n;i++) { int x=read(),y=read(); qaq[x][y]=qaq[y][x]=1; } int cnt=0; for (int i=1;i<n;i++) { int x=read(),y=read(); if (qaq[x][y]) cnt++; } cout<<ksm(m,n-cnt); } if (op==1) { if (m==1) {cout<<ksm(n,n-2);return 0;} for (int i=1;i<n;i++) { int x=read(),y=read(); addedge(x,y),addedge(y,x); } w=1ll*n*inv(inv(m)-1)%P; dfs(1,1); cout<<1ll*ksm(m,n)*ksm(n,n-2)%P*ksm(inv(w),n)%P*f[1][1]%P; //f(i)钦定i条边相同时树的个数 //n^(n-i-2)*Σ∏size //g(i)恰有i条边相同时树的个数 //g(i)=Σ(-1)^(j-i)*C(j,i)*f(j) //ans=Σg(i)*m^(n-i) //ans=Σm^(n-i)*Σ(-1)^(j-i)*C(j,i)*f(j) //ans=Σf(i)*Σ(-1)^(i-j)*C(i,j)*m^(n-j) //ans=m^n*Σf(i)*Σ(-1)^(i-j)*C(i,j)*(1/m)^j //ans=m^n*Σf(i)*(1/m-1)^i //ans=m^n*n^(n-2)*Σ((1/m-1)/n)^i*Σ∏size //p=n/(1/m-1) //ans=m^n*n^(n-2)*(1/p)^n*Σp^i*Σ∏size (i=1~n) //f[i][j] i子树 根所在连通块大小为j时 贡献之和 //每个连通块选一个点 贡献之和 每选一个点乘p //选一些边将其断开 //f[i][0/1]i所在连通块是否选了点的贡献之和 } if (op==2) { if (m==1) {cout<<ksm(n,2*(n-2));return 0;} fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P; w=inv(m)-1; for (int i=1;i<=n;i++) a[i]=1ll*n*n%P*inv(w)%P*ksm(i,i)%P*inv(fac[i])%P; int t=1;while (t<=(n+1<<1)) t<<=1; Exp(a,d,t); cout<<1ll*ksm(m,n)*ksm(w,n)%P*inv(ksm(n,4))%P*d[n]%P*fac[n]%P; //假设钦定了各连通块的点 //m^n*Σ(n^(|S|-2)*(∏Sj^Sj)*(1/m-1)^(n-|S|) //m^n*(1/m-1)^n/n^4*(∏Sj^Sj*n^2*(1/m-1)^(-|S|) //m^n*(1/m-1)^n/n^4*(∏Sj^Sj*n^2/(1/m-1)) //exp直接钦定 } return 0; }