zoukankan      html  css  js  c++  java
  • BZOJ5119 生成树计数(prufer+生成函数+分治FFT+多项式exp)

      https://www.luogu.org/problemnew/solution/P4002 神树的题解写的很清楚了。稍微补充:

      1.[x^i]ln(A(ax))=a^i[x^i]ln(A(x)),感觉直接证并非那么显然,大约是先求出多项式再把ax作为自变量带回去。

      2.最后一句中的式子,即考虑由ai组成的|S|=k的S集合在xk中被统计了几次,容易发现仅当这个Σ∏(1-ajx) (i=1~n,j≠i)中的ai不在S中出现会被统计一次,于是统计次数为n-k,所以乘上n-k即为所要的系数。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 150010
    #define P 998244353
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,s[N],a[N],b[N],c[N],d[N],e[N],f[N],g[N],h[N],A[N],B[N],r[N],fac[N],t;
    int ksm(int a,int k)
    {
    	int s=1;
    	for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
    	return s; 
    }
    int inv(int a){return ksm(a,P-2);}
    void DFT(int *a,int n,int g)
    {
    	for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1);
    	for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
    	for (int i=2;i<=n;i<<=1)
    	{
    		int wn=ksm(g,(P-1)/i);
    		for (int j=0;j<n;j+=i)
    		{
    			int w=1;
    			for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P)
    			{
    				int x=a[k],y=1ll*w*a[k+(i>>1)]%P;
    				a[k]=(x+y)%P,a[k+(i>>1)]=(x+P-y)%P;
    			}
    		}
    	}
    }
    void IDFT(int *a,int n)
    {
    	DFT(a,n,inv(3));
    	int u=inv(n);
    	for (int i=0;i<n;i++) a[i]=1ll*a[i]*u%P;
    }
    void mul(int *a,int *b,int n)
    {
    	DFT(a,n,3),DFT(b,n,3);
    	for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
    	IDFT(a,n);IDFT(b,n);
    }
    void Inv(int *a,int *b,int n)
    {
    	if (n==1){for (int i=0;i<t;i++) b[i]=0;b[0]=inv(a[0]);return;}
    	Inv(a,b,n>>1);
    	for (int i=0;i<n;i++) A[i]=a[i];
    	for (int i=n;i<(n<<1);i++) A[i]=0;
    	n<<=1;
    	DFT(b,n,3),DFT(A,n,3);
    	for (int i=0;i<n;i++) b[i]=1ll*b[i]*(P+2-1ll*A[i]*b[i]%P)%P;
    	IDFT(b,n);
    	n>>=1;
    	for (int i=n;i<(n<<1);i++) b[i]=0;
    }
    void trans(int *a,int *b,int n){for (int i=n-1;i>=0;i--) b[i]=1ll*a[i+1]*(i+1)%P;}
    void dx(int *a,int *b,int n){b[0]=0;for (int i=1;i<n;i++) b[i]=1ll*a[i-1]*inv(i)%P;}
    void Ln(int *a,int n)
    {
    	for (int i=0;i<n;i++) b[i]=c[i]=0;
    	Inv(a,b,n>>1);
    	trans(a,c,n>>1);
    	mul(b,c,n);
    	dx(b,a,n);
    }
    void Exp(int *a,int *b,int n)
    {
    	if (n==1){b[0]=1;return;}
    	Exp(a,b,n>>1);
    	for (int i=0;i<(n>>1);i++) B[i]=b[i];
    	for (int i=(n>>1);i<n;i++) B[i]=0;
    	Ln(B,n);
    	for (int i=0;i<n;i++) B[i]=(a[i]-B[i]+P)%P;
        B[0]=(B[0]+1)%P;
        n<<=1;
        for (int i=(n>>1);i<n;i++) B[i]=0;
        mul(b,B,n);
        n>>=1;
        for (int i=n;i<(n<<1);i++) b[i]=0;
    }
    void solve(int l,int r,int *a)
    {
    	if (l==r) {a[0]=1;a[1]=P-s[l];return;}
    	int mid=l+r>>1;
    	int t=1;while (t<=r-l+1) t<<=1;
    	int A[t],B[t];memset(A,0,sizeof(A)),memset(B,0,sizeof(B));
    	solve(l,mid,A),solve(mid+1,r,B);
    	mul(A,B,t);
    	for (int i=0;i<t;i++) a[i]=A[i];
    }
    int main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("bzoj5119.in","r",stdin);
    	freopen("bzoj5119.out","w",stdout);
    	const char LL[]="%I64d
    ";
    #else
    	const char LL[]="%lld
    ";
    #endif
    	n=read(),m=read();
    	for (int i=1;i<=n;i++) s[i]=read();
    	fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P;
    	int t=1;while (t<=(n<<1)) t<<=1;
    	for (int i=0;i<n;i++) f[i]=1ll*ksm(i+1,m)*inv(fac[i])%P;
    	for (int i=0;i<n;i++) g[i]=1ll*ksm(i+1,m)*f[i]%P;
    	Inv(f,a,t>>1);
    	mul(g,a,t);
    	for (int i=n;i<t;i++) g[i]=0;
    	Ln(f,t);
    	solve(1,n,h);
    	Inv(h,e,t>>1);
    	for (int i=0;i<n;i++) h[i]=1ll*h[i]*(n-i)%P;
    	mul(h,e,t);
    	for (int i=0;i<n;i++) g[i]=1ll*g[i]*h[i]%P;
    	for (int i=0;i<n;i++) f[i]=1ll*f[i]*h[i]%P;
    	Exp(f,d,t);
    	for (int i=(t>>1);i<t;i++) d[i]=0;
    	mul(d,g,t);
    	int ans=d[n-2];
    	for (int i=1;i<=n;i++) ans=1ll*ans*s[i]%P;
    	cout<<1ll*ans*fac[n-2]%P;
    	return 0;
    }
    

      

  • 相关阅读:
    引号的区别
    QT中加载动态链接库
    QString 转换为 char *
    C++虚继承初识
    虚析构函数详解
    赋值兼容规则
    利用docker搭建spark hadoop workbench
    《用Java写一个通用的服务器程序》03 处理新socket
    《用Java写一个通用的服务器程序》02 监听器
    《用Java写一个通用的服务器程序》01 综述
  • 原文地址:https://www.cnblogs.com/Gloid/p/10650555.html
Copyright © 2011-2022 走看看