考虑差分序列。每个差分序列的贡献是n-差分序列的和,即枚举首项。将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和。显然每一个数出现次数是相同的,所以cnt(i)即等于(k-1)*mk-2。于是就很好算了。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long int m,k,p;ll n; ll ksm(ll a,ll k) { if (k==0) return 1; ll tmp=ksm(a,k>>1); if (k&1) return tmp*tmp%p*a%p; else return tmp*tmp%p; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj3142.in","r",stdin); freopen("bzoj3142.out","w",stdout); const char LL[]="%I64d "; #else const char LL[]="%lld "; #endif cin>>n>>k>>m>>p;k--; cout<<(n%p*ksm(m,k)%p-(k?1ll*m*(m+1)/2%p*ksm(m,k-1)%p*k%p:0)+p)%p; return 0; }