数据范围过大说明这个题和组合一点关系也没有,答案基本上肯定是ab的形式了。暴力打表感觉不太好写,找到当年的题面发现还有个样例是6 40 401898087,于是暴力找ab=401898087的数,发现一组a=64 b=40,可以发现a=2n b=k,同时也符合第一组数据,于是就做完了。
可以发现集合中的数字互不影响,对每个数字分别考虑。问题变为在一个全0三角形中填一些1,使得若ai,j=1,则ai-1,j=ai-1,j=1。
容易发现每行为1的一定是一个前缀。设fi,j为第i行有j个1的方案数,则fi,j=Σfi-1,k (j<=k<=i-1),fi,i=1。归纳得fi,j=2i-j-1(i>j)。
那么这个填法的数量是2k,每个数字都有这么多填法,答案即为2nk。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } #define P 1000000007 int n,m; int ksm(int a,int k) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj4475.in","r",stdin); freopen("bzoj4475.out","w",stdout); const char LL[]="%I64d "; #else const char LL[]="%lld "; #endif n=read(),m=read(); cout<<ksm(ksm(2,n),m); return 0; }