zoukankan      html  css  js  c++  java
  • c语言数字图像处理(五):空间滤波

     空间滤波原理

    使用大小为m*n的滤波器对大小为M*N的图像进行线性空间滤波,将滤波器模板乘以图像中对应灰度值,相加得模板中心灰度值

                                                                                 a = (m-1)/2, b = (n-1)/2

    若f(x+s, y+t)不在原图内,补0

    平滑线性滤波器

    滤波过程

    分母为滤波器模板和

    代码实现

     1 int is_in_array(short x, short y, short height, short width)
     2 {
     3     if (x >= 0 && x < width && y >= 0 && y < height)
     4         return 1;
     5     else
     6         return 0;
     7 }
     8 
     9 /*
    10  * element
    11  * v0  v1  v2
    12  * v3  v4  v5
    13  * v6  v7  v8
    14  *
    15  */
    16 void filtering(short** in_array, short** out_array, long height, long width)
    17 {
    18     short value[9];
    19 
    20     /* linear filtering */
    21      short sum;
    22      for (int i = 0; i < ARRAY_SIZE; i++)
    23          for (int j = 0; j < ARRAY_SIZE; j++)
    24              sum += average[i][j];
    25 
    26     for (int i = 0; i < height; i++){
    27         for (int j = 0; j < width; j++){
    28             value[0] = is_in_array(j-1, i-1, height, width) ? in_array[i-1][j-1] : 0;
    29             value[1] = is_in_array(j, i-1, height, width) ? in_array[i-1][j] : 0;
    30             value[2] = is_in_array(j+1, i-1, height, width) ? in_array[i-1][j+1] : 0;
    31             value[3] = is_in_array(j-1, i, height, width) ? in_array[i][j-1] : 0;
    32             value[4] = in_array[i][j];
    33             value[5] = is_in_array(j+1, i, height, width) ? in_array[i][j+1] : 0;
    34             value[6] = is_in_array(j-1, i+1, height, width) ? in_array[i+1][j-1] : 0;
    35             value[7] = is_in_array(j, i+1, height, width) ? in_array[i+1][j] : 0;
    36             value[8] = is_in_array(j+1, i+1, height, width) ? in_array[i+1][j+1] : 0;
    37 
    38             /* linear filtering */
    39              out_array[i][j] = (value[0] * average[0][0] + value[1] * average[0][1] + value[2] * average[0][2] +
    40                                 value[3] * average[1][0] + value[4] * average[1][1] + value[5] * average[1][2] +
    41                                 value[6] * average[2][0] + value[7] * average[2][1] + value[8] * average[2][2]) / sum;
    42 
    43         }
    44     }
    45 }

    原图

    模板

    结果

    可以看出线性滤波器会较大程度地影响原图,降低对比度,对与图片右上角的噪声没有明显的去除效果

    统计排序(非线性)滤波器

     中值滤波器

    中值滤波器对处理脉冲噪声非常有效,这种噪声被称为椒盐噪声

    实现方法:取该像素某邻域中值(本次测试取3*3)

    代码实现

     1 short mid_val(short* a, short num)
     2 {
     3     short temp;
     4 
     5     for (int i = 0; i < num; i++)
     6     {
     7         temp = a[i];
     8         int j = i;
     9         for (; j > 0 && a[j - 1] > temp; j--)
    10             a[j] = a[j - 1];
    11         a[j] = temp;
    12     }
    13 
    14     return a[num/2];
    15 }
    16 int is_in_array(short x, short y, short height, short width)
    17 {
    18     if (x >= 0 && x < width && y >= 0 && y < height)
    19         return 1;
    20     else
    21         return 0;
    22 }
    23 
    24 /*
    25  * element
    26  * v0  v1  v2
    27  * v3  v4  v5
    28  * v6  v7  v8
    29  *
    30  */
    31 void filtering(short** in_array, short** out_array, long height, long width)
    32 {
    33     short value[9];
    34 
    35     for (int i = 0; i < height; i++){
    36         for (int j = 0; j < width; j++){
    37             value[0] = is_in_array(j-1, i-1, height, width) ? in_array[i-1][j-1] : 0;
    38             value[1] = is_in_array(j, i-1, height, width) ? in_array[i-1][j] : 0;
    39             value[2] = is_in_array(j+1, i-1, height, width) ? in_array[i-1][j+1] : 0;
    40             value[3] = is_in_array(j-1, i, height, width) ? in_array[i][j-1] : 0;
    41             value[4] = in_array[i][j];
    42             value[5] = is_in_array(j+1, i, height, width) ? in_array[i][j+1] : 0;
    43             value[6] = is_in_array(j-1, i+1, height, width) ? in_array[i+1][j-1] : 0;
    44             value[7] = is_in_array(j, i+1, height, width) ? in_array[i+1][j] : 0;
    45             value[8] = is_in_array(j+1, i+1, height, width) ? in_array[i+1][j+1] : 0;
    46 
    47             /* median filtering */
    48             out_array[i][j] = mid_val(value, 9);
    49 
    50         }
    51     }
    52 }

    锐化空间滤波器

    一阶微分

    二阶微分

    二阶微分在增强细节方面比一阶微分好很多,适合锐化图像

    使用二阶微分进行图像锐化-拉普拉斯算子

    代码实现

     1 void filtering(short** in_array, short** out_array, long height, long width)
     2 {
     3     short value[9];
     4 
     5     for (int i = 0; i < height; i++){
     6         for (int j = 0; j < width; j++){
     7             value[0] = is_in_array(j-1, i-1, height, width) ? in_array[i-1][j-1] : 0;
     8             value[1] = is_in_array(j, i-1, height, width) ? in_array[i-1][j] : 0;
     9             value[2] = is_in_array(j+1, i-1, height, width) ? in_array[i-1][j+1] : 0;
    10             value[3] = is_in_array(j-1, i, height, width) ? in_array[i][j-1] : 0;
    11             value[4] = in_array[i][j];
    12             value[5] = is_in_array(j+1, i, height, width) ? in_array[i][j+1] : 0;
    13             value[6] = is_in_array(j-1, i+1, height, width) ? in_array[i+1][j-1] : 0;
    14             value[7] = is_in_array(j, i+1, height, width) ? in_array[i+1][j] : 0;
    15             value[8] = is_in_array(j+1, i+1, height, width) ? in_array[i+1][j+1] : 0;
    16 
    17             /* sharpening filtering */
    18             out_array[i][j] = value[0] * sharpen[0][0] + value[1] * sharpen[0][1] + value[2] * sharpen[0][2] +
    19                               value[3] * sharpen[1][0] + value[4] * sharpen[1][1] + value[5] * sharpen[1][2] +
    20                               value[6] * sharpen[2][0] + value[7] * sharpen[2][1] + value[8] * sharpen[2][2];
    21             out_array[i][j] += in_array[i][j];
    22             if (out_array[i][j] < 0)
    23                 out_array[i][j] = 0;
    24             else if (out_array[i][j] > 0xff)
    25                 out_array[i][j] = 0xff;
    26 
    27         }
    28     }
    29 }

    原图

    锐化

    使用一阶微分对(非线性)图像锐化-梯度

    实现边缘增强

    算法实现

     1 int is_in_array(short x, short y, short height, short width)
     2 {
     3     if (x >= 0 && x < width && y >= 0 && y < height)
     4         return 1;
     5     else
     6         return 0;
     7 }
     8 
     9 /*
    10  * element
    11  * v0  v1  v2
    12  * v3  v4  v5
    13  * v6  v7  v8
    14  *
    15  */
    16 void filtering(short** in_array, short** out_array, long height, long width)
    17 {
    18     short value[9];
    19 
    20     for (int i = 0; i < height; i++){
    21         for (int j = 0; j < width; j++){
    22             value[0] = is_in_array(j-1, i-1, height, width) ? in_array[i-1][j-1] : 0;
    23             value[1] = is_in_array(j, i-1, height, width) ? in_array[i-1][j] : 0;
    24             value[2] = is_in_array(j+1, i-1, height, width) ? in_array[i-1][j+1] : 0;
    25             value[3] = is_in_array(j-1, i, height, width) ? in_array[i][j-1] : 0;
    26             value[4] = in_array[i][j];
    27             value[5] = is_in_array(j+1, i, height, width) ? in_array[i][j+1] : 0;
    28             value[6] = is_in_array(j-1, i+1, height, width) ? in_array[i+1][j-1] : 0;
    29             value[7] = is_in_array(j, i+1, height, width) ? in_array[i+1][j] : 0;
    30             value[8] = is_in_array(j+1, i+1, height, width) ? in_array[i+1][j+1] : 0;
    31 
    32             /* sharpening using grad */
    33             out_array[i][j] = (short)abs(value[0] * soble1[0][0] + value[1] * soble1[0][1] + value[2] * soble1[0][2] +
    34                                          value[3] * soble1[1][0] + value[4] * soble1[1][1] + value[5] * soble1[1][2] +
    35                                          value[6] * soble1[2][0] + value[7] * soble1[2][1] + value[8] * soble1[2][2]) + 
    36                               (short)abs(value[0] * soble2[0][0] + value[1] * soble2[0][1] + value[2] * soble2[0][2] +
    37                                          value[3] * soble2[1][0] + value[4] * soble2[1][1] + value[5] * soble2[1][2] +
    38                                          value[6] * soble2[2][0] + value[7] * soble2[2][1] + value[8] * soble2[2][2]);
    39         }
    40     }
    41 }

    原图

    边缘图

     边缘增强

    如果卷积和大于用户选择的的阈值,值为该和,否则,值为原图灰度值,选阈值为200

    仅需在上述代码中添加

    1 /* edge enhancement */
    2             if (out_array[i][j] < 0)
    3                 out_array[i][j] = 0;
    4             else if (out_array[i][j] > 0xff)
    5                 out_array[i][j] = 0xff;
    6             else if (out_array[i][j] > 200)
    7                 ;
    8             else
    9                 out_array[i][j] = in_array[i][j];

    边缘增强图

  • 相关阅读:
    使用ASP的优势和劣势
    rman的catalog命令
    sql exist和in的区别及查询效率比较
    zblog模板修改字体大小的教程
    js 刷新和关闭页面触发的事件 及操作COOKIE
    Flex走出低谷的关键: 打破Flex固有的定义
    服务网健康日志中 radio传值解决方案
    sql语句查询出表里的第二条、第三条记录(附加多个条件)
    鼠标经过超链接文字变色
    (asp.net)鼠标放上去的时候文本框的提示消失,鼠标离开又重新显示
  • 原文地址:https://www.cnblogs.com/GoldBeetle/p/9744625.html
Copyright © 2011-2022 走看看