zoukankan      html  css  js  c++  java
  • c语言数字图像处理(八):噪声模型及均值滤波器

    图像退化/复原过程模型

    高斯噪声

    PDF(概率密度函数)

    生成高斯随机数序列

    算法可参考<http://www.doc.ic.ac.uk/~wl/papers/07/csur07dt.pdf>

    代码实现

     1 double gaussrand()
     2 {
     3     static double V1, V2, S;
     4     static int phase = 0;
     5     double X;
     6 
     7     if(phase == 0) {
     8         do {
     9             double U1 = (double)rand() / RAND_MAX;
    10             double U2 = (double)rand() / RAND_MAX;
    11 
    12             V1 = 2 * U1 - 1;
    13             V2 = 2 * U2 - 1;
    14             S = V1 * V1 + V2 * V2;
    15             } while(S >= 1 || S == 0);
    16 
    17         X = V1 * sqrt(-2 * log(S) / S);
    18     } else
    19         X = V2 * sqrt(-2 * log(S) / S);
    20 
    21     phase = 1 - phase;
    22 
    23     return X * 50;
    24 }

    生成高斯噪声图及直方图

    下面给一幅图添加高斯噪声

    代码实现

     1 void add_gaussian_noise(short** in_array, short** out_array, long height, long width)
     2 {
     3     srand(time(NULL));
     4     for (int i = 0; i < height; i++){
     5         for (int j = 0; j < width; j++){
     6             out_array[i][j] = in_array[i][j] + (short)gaussrand();
     7             if (out_array[i][j] < 0x00)
     8                 out_array[i][j] = 0x00;
     9             else if (out_array[i][j] > 0xff)
    10                 out_array[i][j] = 0xff;
    11         }
    12     }
    13 }

    原图

    添加高斯噪声

    椒盐噪声

    添加椒盐噪声(胡椒噪声和盐粒噪声概率分别为5%)

     1 void add_salt_pepper_noise(short** in_array, short** out_array, long height, long width)
     2 {
     3     srand(time(NULL));
     4     int noise_p;
     5 
     6     for (int i = 0; i < height; i++){
     7         for (int j = 0; j < width; j++){
     8             noise_p = rand() % 10;
     9             if (noise_p == 0){
    10                 int temp = rand() % 2;
    11                 if (temp)
    12                     out_array[i][j] = 0x00;
    13                 else
    14                     out_array[i][j] = 0xff;
    15             }
    16             else
    17                 out_array[i][j] = in_array[i][j];
    18         }
    19     }
    20 }

    均值滤波器

    算术均值滤波器

    代码实现

     1 int is_in_array(short x, short y, short height, short width)
     2 {
     3     if (x >= 0 && x < width && y >= 0 && y < height)
     4         return 1;
     5     else
     6         return 0;
     7 }
     8 
     9 /*
    10  * element
    11  * v0  v1  v2
    12  * v3  v4  v5
    13  * v6  v7  v8
    14  *
    15  */
    16 void filtering(short** in_array, short** out_array, long height, long width)
    17 {
    18     short value[9];
    19 
    20     for (int i = 0; i < height; i++){
    21         for (int j = 0; j < width; j++){
    22             value[0] = is_in_array(j-1, i-1, height, width) ? in_array[i-1][j-1] : 0;
    23             value[1] = is_in_array(j, i-1, height, width) ? in_array[i-1][j] : 0;
    24             value[2] = is_in_array(j+1, i-1, height, width) ? in_array[i-1][j+1] : 0;
    25             value[3] = is_in_array(j-1, i, height, width) ? in_array[i][j-1] : 0;
    26             value[4] = in_array[i][j];
    27             value[5] = is_in_array(j+1, i, height, width) ? in_array[i][j+1] : 0;
    28             value[6] = is_in_array(j-1, i+1, height, width) ? in_array[i+1][j-1] : 0;
    29             value[7] = is_in_array(j, i+1, height, width) ? in_array[i+1][j] : 0;
    30             value[8] = is_in_array(j+1, i+1, height, width) ? in_array[i+1][j+1] : 0;
    31 
    32             /* Arithmetic Mean Filter */
    33             for (int k = 0; k < ARRAY_SIZE*ARRAY_SIZE; k++)
    34                 out_array[i][j] += value[k];
    35             out_array[i][j] /= ARRAY_SIZE*ARRAY_SIZE;
    36 
    37         }
    38     }
    39 }

    处理高斯噪声

    处理椒盐噪声

    结论:算术平均滤波对于高斯噪声和椒盐噪声都有一定的效果,但是同时会平滑图像

    几何均值滤波器

    实现

     1 void filtering(short** in_array, short** out_array, long height, long width)
     2 {
     3     short value[9];
     4 
     5     for (int i = 0; i < height; i++){
     6         for (int j = 0; j < width; j++){
     7             value[0] = is_in_array(j-1, i-1, height, width) ? in_array[i-1][j-1] : 0;
     8             value[1] = is_in_array(j, i-1, height, width) ? in_array[i-1][j] : 0;
     9             value[2] = is_in_array(j+1, i-1, height, width) ? in_array[i-1][j+1] : 0;
    10             value[3] = is_in_array(j-1, i, height, width) ? in_array[i][j-1] : 0;
    11             value[4] = in_array[i][j];
    12             value[5] = is_in_array(j+1, i, height, width) ? in_array[i][j+1] : 0;
    13             value[6] = is_in_array(j-1, i+1, height, width) ? in_array[i+1][j-1] : 0;
    14             value[7] = is_in_array(j, i+1, height, width) ? in_array[i+1][j] : 0;
    15             value[8] = is_in_array(j+1, i+1, height, width) ? in_array[i+1][j+1] : 0;
    16 
    17             /* Geometric Mean Filter */
    18             double product = 1.0;
    19             for (int k = 0; k < ARRAY_SIZE*ARRAY_SIZE; k++)
    20                 product *= value[k];
    21             product = pow(product, 1.0 / 9.0);
    22             out_array[i][j] = (short)product;
    23 
    24             if (out_array[i][j] < 0x00)
    25                 out_array[i][j] = 0x00;
    26             else if (out_array[i][j] > 0xff)
    27                 out_array[i][j] = 0xff;
    28         }
    29     }
    30 }

    几何均值滤波器与算术均值滤波器相比,丢失的图像细节更少

    谐波均值滤波器

    实现

     1 void filtering(short** in_array, short** out_array, long height, long width)
     2 {
     3     short value[9];
     4 
     5     for (int i = 0; i < height; i++){
     6         for (int j = 0; j < width; j++){
     7             value[0] = is_in_array(j-1, i-1, height, width) ? in_array[i-1][j-1] : 0;
     8             value[1] = is_in_array(j, i-1, height, width) ? in_array[i-1][j] : 0;
     9             value[2] = is_in_array(j+1, i-1, height, width) ? in_array[i-1][j+1] : 0;
    10             value[3] = is_in_array(j-1, i, height, width) ? in_array[i][j-1] : 0;
    11             value[4] = in_array[i][j];
    12             value[5] = is_in_array(j+1, i, height, width) ? in_array[i][j+1] : 0;
    13             value[6] = is_in_array(j-1, i+1, height, width) ? in_array[i+1][j-1] : 0;
    14             value[7] = is_in_array(j, i+1, height, width) ? in_array[i+1][j] : 0;
    15             value[8] = is_in_array(j+1, i+1, height, width) ? in_array[i+1][j+1] : 0;
    16 
    17             /* Harmonic Mean Filter */
    18             double sum = 0;
    19             for (int k = 0; k < ARRAY_SIZE*ARRAY_SIZE; k++)
    20                 sum += 1.0 / value[k];
    21             out_array[i][j] = (short)(9.0 / sum);
    22 
    23             if (out_array[i][j] < 0x00)
    24                 out_array[i][j] = 0x00;
    25             else if (out_array[i][j] > 0xff)
    26                 out_array[i][j] = 0xff;
    27         }
    28     }
    29 }

    处理高斯噪声

    处理椒盐噪声

    对盐粒噪声效果较好,不适用于胡椒噪声,善于处理高斯噪声

    逆谐波均值滤波器

    Q为滤波器的阶数,Q为正时,消除胡椒噪声,Q为负时消除盐粒噪声

    Q=0为算术均值滤波器,Q=-1谐波均值滤波器

    实现

     1 void filtering(short** in_array, short** out_array, long height, long width)
     2 {
     3     short value[9];
     4 
     5     for (int i = 0; i < height; i++){
     6         for (int j = 0; j < width; j++){
     7             value[0] = is_in_array(j-1, i-1, height, width) ? in_array[i-1][j-1] : 0;
     8             value[1] = is_in_array(j, i-1, height, width) ? in_array[i-1][j] : 0;
     9             value[2] = is_in_array(j+1, i-1, height, width) ? in_array[i-1][j+1] : 0;
    10             value[3] = is_in_array(j-1, i, height, width) ? in_array[i][j-1] : 0;
    11             value[4] = in_array[i][j];
    12             value[5] = is_in_array(j+1, i, height, width) ? in_array[i][j+1] : 0;
    13             value[6] = is_in_array(j-1, i+1, height, width) ? in_array[i+1][j-1] : 0;
    14             value[7] = is_in_array(j, i+1, height, width) ? in_array[i+1][j] : 0;
    15             value[8] = is_in_array(j+1, i+1, height, width) ? in_array[i+1][j+1] : 0;
    16 
    17             /* Contra-Harmonic Mean Filter */
    18             int Q = 2;
    19             double num = 0.0, den = 0.0;
    20             for (int k = 0; k < ARRAY_SIZE*ARRAY_SIZE; k++){
    21                 num += pow(value[k], Q+1);
    22                 den += pow(value[k], Q);
    23             }
    24             out_array[i][j] = (short)(num / den);
    25 
    26             if (out_array[i][j] < 0x00)
    27                 out_array[i][j] = 0x00;
    28             else if (out_array[i][j] > 0xff)
    29                 out_array[i][j] = 0xff;
    30         }
    31     }
    32 }

    Q = 2 消除胡椒噪声

    Q = -2消除盐粒噪声

    Q = -2消除盐粒噪声后的图像使用Q = 2消除胡椒噪声

    再来一次

    再来

    此时椒盐噪声已经基本消除

  • 相关阅读:
    MongoDB下配置用户权限
    (CF)Codeforces445A DZY Loves Chessboard(纯实现题)
    C语言概述
    C#中值类型和引用类型的差别浅记
    Qt5官方demo解析集30——Extending QML
    汉澳sinox通过ndis执行windows驱动程序
    linux设备驱动归纳总结(三):4.ioctl的实现【转】
    linux设备驱动归纳总结(三):3.设备驱动面向对象思想和lseek的实现【转】
    linux设备驱动归纳总结(三):2.字符型设备的操作open、close、read、write【转】
    linux设备驱动归纳总结(三):1.字符型设备之设备申请【转】
  • 原文地址:https://www.cnblogs.com/GoldBeetle/p/9880362.html
Copyright © 2011-2022 走看看