zoukankan      html  css  js  c++  java
  • POJ:2139-Six Degrees of Cowvin Bacon

    传送门:http://poj.org/problem?id=2139

    Six Degrees of Cowvin Bacon

    Time Limit: 1000MS Memory Limit: 65536K
    Total Submissions: 6709 Accepted: 3122

    Description

    The cows have been making movies lately, so they are ready to play a variant of the famous game “Six Degrees of Kevin Bacon”.

    The game works like this: each cow is considered to be zero degrees of separation (degrees) away from herself. If two distinct cows have been in a movie together, each is considered to be one ‘degree’ away from the other. If a two cows have never worked together but have both worked with a third cow, they are considered to be two ‘degrees’ away from each other (counted as: one degree to the cow they’ve worked with and one more to the other cow). This scales to the general case.

    The N (2 <= N <= 300) cows are interested in figuring out which cow has the smallest average degree of separation from all the other cows. excluding herself of course. The cows have made M (1 <= M <= 10000) movies and it is guaranteed that some relationship path exists between every pair of cows.

    Input

    • Line 1: Two space-separated integers: N and M

    • Lines 2..M+1: Each input line contains a set of two or more space-separated integers that describes the cows appearing in a single movie. The first integer is the number of cows participating in the described movie, (e.g., Mi); the subsequent Mi integers tell which cows were.

    Output

    • Line 1: A single integer that is 100 times the shortest mean degree of separation of any of the cows.

    Sample Input

    4 2
    3 1 2 3
    2 3 4

    Sample Output

    100

    Hint

    [Cow 3 has worked with all the other cows and thus has degrees of separation: 1, 1, and 1 – a mean of 1.00 .]


    中文题意:

    数学课上,WNJXYK忽然发现人缘也是可以被量化的,我们用一个人到其他所有人的平均距离来量化计算。
    在这里定义人与人的距离:

    1.自己与自己的距离为0
    2.如果A和B属于同一个小团体,那么他们之间的距离为1
    3.如果A与B属于一个小团体,B与C属于一个小团体,且A与C不同属于任何一个小团体,那么A与C的距离为2(A联系C,经过B、C两个人)
    4.以此类推
    

    班里有N个人 (2 <= N <= 300),共有M对小团体关系(1 <= M <= 10000)。现在,给你所有班级中小团体的信息,问你班里人缘最好的人到其他人的平均距离。(你需要输出平均距离的100倍)

    Input

    第一行输入两个证书N,M 接下来的M+1行。
    每行开头一个整数K表示本小团体大小,然后接下来K个整数表示小团体内学生编号。

    Output

    输出一行:最小的平均距离*100(程序中请不要使用Float和Double计算,可能会判Wa)

    Sample Input

    4 2
    3 1 2 3
    2 3 4
    

    Sample Output

    100
    

    解题心得:

    1. 其实就是一个建图的问题,直接将同一个团体里面的人都添加一条边,距离是100,不建立其他的边,枚举每个点跑最短路就行了。

    #include <stdio.h>
    #include <iostream>
    #include <queue>
    #include <cstring>
    using namespace std;
    const int maxn = 310;
    int maps[maxn][maxn],Time[maxn],Min = 0x7f7f7f7f;
    bool vis[maxn];
    int n,m;
    
    void init() {
        int num[10010];
        memset(maps,0,sizeof(maps));
        for(int z=0;z<m;z++) {
            int cnt;
            scanf("%d",&cnt);
            for(int i=0;i<cnt;i++) {
                scanf("%d",&num[i]);
            }
            for(int i=0;i<cnt;i++)
                for(int j=0;j<i;j++) {
                    maps[num[i]][num[j]] = maps[num[j]][num[i]] = 100;
                }
        }
    }
    
    void spfa(int s) {
        memset(Time,0x7f,sizeof(Time));
        queue <int> qu;
        qu.push(s);
        Time[s] = 0;
        while(!qu.empty()) {
            int now = qu.front(); qu.pop();
            vis[now] = false;
            for(int i=1;i<=n;i++) {
                if(maps[now][i]) {
                    if(Time[i] > Time[now] + maps[now][i]) {
                        Time[i] = Time[now] + maps[now][i];
                        if(!vis[i]) {
                            qu.push(i);
                            vis[i] = true;
                        }
                    }
                }
            }
        }
    }
    
    void get_sum_path() {
        int sum = 0;
        for(int i=1;i<=n;i++) {
            sum += Time[i];
        }
        if(sum < Min)
            Min = sum;
    }
    
    int main() {
        scanf("%d%d",&n,&m);
        init();
        for(int i=1;i<=n;i++) {
            spfa(i);
            get_sum_path();
        }
        printf("%d",Min/(n-1));
        return 0;
    }
  • 相关阅读:
    CF11C How Many Squares?
    CF3D Least Cost Bracket Sequence
    P4106 [HEOI2014]逻辑翻译
    吉大第二届青云杯复赛第6题
    2017六省联考部分题目整理【期末考试,寿司餐厅,组合数问题,分手是祝愿】
    CF578D LCS Again
    P5072 [Ynoi2015]盼君勿忘
    P3232 [HNOI2013]游走
    P6154 游走
    P4648 [IOI2007] pairs 动物对数
  • 原文地址:https://www.cnblogs.com/GoldenFingers/p/9107150.html
Copyright © 2011-2022 走看看