传送门:http://poj.org/problem?id=2955
Brackets
Time Limit: 1000MS Memory Limit: 65536K
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
- 这是一个区间dp的经典例题,刚开始的时候还以为可以模拟做,但是事实就是这是不行的,只是自己想的太简单,括号的匹配有很多种。
- 区间dp执行的时候,里面先是一段区间一段区间的跑,然后枚举这个区间里面每一种匹配情况,由于在选择区间的时候是从小开始选择,所以在枚举每一种匹配情况的时候都是从前面得到的答案来转移的,这也体现了动态规划,从子问题转移。只不过区间dp里面是从一个小的区间慢慢转移到整个区间。但是怎么处理区间里面的状态要看当前问题的特点。
#include<stdio.h>
#include<string.h>
using namespace std;
const int maxn = 110;
char s[maxn];
int dp[maxn][maxn];
bool checke(int S,int E)
{
if(s[S] == '(' && s[E] == ')')
return true;
if(s[S] == '[' && s[E] == ']')
return true;
return false;
}
int main()
{
while(scanf("%s",s))
{
if(strcmp(s,"end") == 0)
break;
memset(dp,0,sizeof(dp));
int len = strlen(s);
for(int i=1;i<len;i++)
for(int j=0,k=i;k<len;k++,j++)
{
if(checke(j,k))
dp[j][k] = dp[j+1][k-1] + 2;
for(int z=j;z<k;z++)
if(dp[j][z] + dp[z+1][k] > dp[j][k])
dp[j][k] = dp[j][z] + dp[z+1][k];
}
printf("%d
",dp[0][len-1]);
}
return 0;
}