Sorting It All Out
Time Limit: 1000MS Memory Limit: 10000K
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character “<” and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy…y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy…y is the sorted, ascending sequence.
Sample Input
4 6
A < B
A < C
B < C
C < D
B < D
A < B
3 2
A < B
B < A
26 1
A < Z
0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.
解题心得:
- 题意就是给你一系列的关系,让你从他给出的关系中从小到大排一个序,如果给出的关系中发生冲突,输出发生冲突的那一步,如果可以得到一个序,输出题目给出到第几个关系才能确定顺序。
- 其实就是给出一个关系,然后拓扑排序判断一下,因为最多只有26个字母,所以怎么写都不会超时。如果题目给出的关系发生冲突,那么必然可以形成环,所以判断环就行,如果能够确定n个点的关系,那么每次只能出现一个出度为0的点,最后n个点的顺序全得到。思路比较简单,只要不手贱写一些BUG那么还是很容易用代码实现的。
#include<stdio.h>
#include<algorithm>
#include<set>
#include<stack>
#include<vector>
#include<cstring>
using namespace std;
const int maxn = 100;
char s[maxn];
vector <int> ve[maxn];//用不定长数组来存储边的关系
int out[maxn],n,m;
bool vis[maxn],maps[maxn][maxn];
int ans;
stack <int> st1;
void init()
{
ans = -1;
for(int i=0; i<maxn; i++)
ve[i].clear();
memset(out,0,sizeof(out));
memset(maps,0,sizeof(maps));
memset(vis,0,sizeof(vis));
}
int toposort(int pos)
{
maps[s[0]][s[2]] = true;
vis[s[0]] = vis[s[2]] = true;//已经出现了的点
out[s[0]]++;//出度++
ve[s[2]].push_back(s[0]);
int in1[maxn],out1[maxn];
bool vis1[maxn];
memcpy(out1,out,sizeof(out));
memcpy(vis1,vis,sizeof(vis));
stack<int>st;
bool flag = false;
while(1)
{
int num = 0;
vector<int>va;
for(int i='A'; i<'A'+n; i++)
{
if(out1[i] == 0 && vis1[i])//出度为零并且已经出现了的点
va.push_back(i);
}
if(va.size() > 1)//出度为0的点不止一个做好标记
flag = true;
if(va.size() == 0)//没有出度为0的点了
break;
for(int i=0; i<va.size(); i++)//根据拓扑排序来解决这个出度为0的点
{
int k = va[i];
st.push(k);
vis1[k] = false;
for(int j=0;j<ve[k].size();j++)
out1[ve[k][j]]--;
}
}
int sum2 = 0;
for(int i='A'; i<'A'+n; i++)//检查是否出现了环
if(out1[i])
sum2++;
if(sum2 != 0)
{
//如果有环记录出现环的步数,然后直接返回
ans = pos;
return 2;
}
if(flag)//出现了多个入度为零的点
return 1;
if(st.size() == n)//找到了n个符合拓扑排序的点
{
ans = pos;
st1 = st;
return 3;
}
return 1;//给出的关系不够不能得出答案
}
int main()
{
while(scanf("%d%d",&n,&m) && n+m)
{
init();//初始化一些数组
bool cont_flag = false;//是否已经出现结果
int k;
for(int i=1; i<=m; i++)
{
scanf("%s",s);
if(cont_flag)
continue;
if(maps[s[0]][s[2]])//去除重边
continue;
k = toposort(i);
if(k == 2)
cont_flag = true;
if(k == 3)
cont_flag = true;
}
if(k != 3 && k != 2)//没找到答案也未出现环,说明给出的关系不足以判断
printf("Sorted sequence cannot be determined.
");
if(k == 2)
printf("Inconsistency found after %d relations.
",ans);
if(k == 3)
{
printf("Sorted sequence determined after %d relations: ",ans);
while(st1.size())
{
printf("%c",st1.top());
st1.pop();
}
printf(".
");
}
}
return 0;
}