zoukankan      html  css  js  c++  java
  • POJ:1094-Sorting It All Out(拓扑排序经典题型)

    Sorting It All Out

    Time Limit: 1000MS Memory Limit: 10000K

    Description

    An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

    Input

    Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character “<” and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

    Output

    For each problem instance, output consists of one line. This line should be one of the following three:

    Sorted sequence determined after xxx relations: yyy…y.
    Sorted sequence cannot be determined.
    Inconsistency found after xxx relations.

    where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy…y is the sorted, ascending sequence.

    Sample Input

    4 6
    A < B
    A < C
    B < C
    C < D
    B < D
    A < B
    3 2
    A < B
    B < A
    26 1
    A < Z
    0 0

    Sample Output

    Sorted sequence determined after 4 relations: ABCD.
    Inconsistency found after 2 relations.
    Sorted sequence cannot be determined.


    解题心得:

    • 题意就是给你一系列的关系,让你从他给出的关系中从小到大排一个序,如果给出的关系中发生冲突,输出发生冲突的那一步,如果可以得到一个序,输出题目给出到第几个关系才能确定顺序。
    • 其实就是给出一个关系,然后拓扑排序判断一下,因为最多只有26个字母,所以怎么写都不会超时。如果题目给出的关系发生冲突,那么必然可以形成环,所以判断环就行,如果能够确定n个点的关系,那么每次只能出现一个出度为0的点,最后n个点的顺序全得到。思路比较简单,只要不手贱写一些BUG那么还是很容易用代码实现的。

    #include<stdio.h>
    #include<algorithm>
    #include<set>
    #include<stack>
    #include<vector>
    #include<cstring>
    using namespace std;
    const int maxn = 100;
    char s[maxn];
    vector <int> ve[maxn];//用不定长数组来存储边的关系
    int out[maxn],n,m;
    bool vis[maxn],maps[maxn][maxn];
    int ans;
    stack <int> st1;
    void init()
    {
        ans = -1;
        for(int i=0; i<maxn; i++)
            ve[i].clear();
        memset(out,0,sizeof(out));
        memset(maps,0,sizeof(maps));
        memset(vis,0,sizeof(vis));
    }
    
    int toposort(int pos)
    {
        maps[s[0]][s[2]] = true;
        vis[s[0]] = vis[s[2]] = true;//已经出现了的点
        out[s[0]]++;//出度++
        ve[s[2]].push_back(s[0]);
        int in1[maxn],out1[maxn];
        bool vis1[maxn];
        memcpy(out1,out,sizeof(out));
        memcpy(vis1,vis,sizeof(vis));
        stack<int>st;
        bool flag = false;
        while(1)
        {
            int num = 0;
            vector<int>va;
            for(int i='A'; i<'A'+n; i++)
            {
                if(out1[i] == 0 && vis1[i])//出度为零并且已经出现了的点
                    va.push_back(i);
            }
            if(va.size() > 1)//出度为0的点不止一个做好标记
                flag = true;
            if(va.size() == 0)//没有出度为0的点了
                break;
    
            for(int i=0; i<va.size(); i++)//根据拓扑排序来解决这个出度为0的点
            {
                int k = va[i];
                st.push(k);
                vis1[k] = false;
                for(int j=0;j<ve[k].size();j++)
                    out1[ve[k][j]]--;
            }
        }
        int sum2 = 0;
        for(int i='A'; i<'A'+n; i++)//检查是否出现了环
            if(out1[i])
                sum2++;
        if(sum2 != 0)
        {
            //如果有环记录出现环的步数,然后直接返回
            ans = pos;
            return 2;
        }
        if(flag)//出现了多个入度为零的点
            return 1;
        if(st.size() == n)//找到了n个符合拓扑排序的点
        {
            ans = pos;
            st1 = st;
            return 3;
        }
        return 1;//给出的关系不够不能得出答案
    }
    
    int main()
    {
        while(scanf("%d%d",&n,&m) && n+m)
        {
            init();//初始化一些数组
            bool cont_flag = false;//是否已经出现结果
            int k;
            for(int i=1; i<=m; i++)
            {
                scanf("%s",s);
                if(cont_flag)
                    continue;
                if(maps[s[0]][s[2]])//去除重边
                    continue;
    
                k = toposort(i);
                if(k == 2)
                    cont_flag = true;
                if(k == 3)
                    cont_flag = true;
            }
            if(k != 3 && k != 2)//没找到答案也未出现环,说明给出的关系不足以判断
                printf("Sorted sequence cannot be determined.
    ");
            if(k == 2)
                printf("Inconsistency found after %d relations.
    ",ans);
            if(k == 3)
            {
                printf("Sorted sequence determined after %d relations: ",ans);
                while(st1.size())
                {
                    printf("%c",st1.top());
                    st1.pop();
                }
                printf(".
    ");
            }
        }
        return 0;
    }
    
  • 相关阅读:
    u-boot.lds分析
    u-boot的makefile中的一些目录的设定,以及涉及的shell,make语法。
    u-boot入门第一步,分析mkconfig
    uboot学习——Makefile里的echo使用!
    Linux下的打包与压缩和tar命令!
    关于undefined reference的问题
    JZ2440 编译Uboot1.1.6 undefined reference to ‘raise’
    POJ 1094 Sorting It All Out
    链式前向星
    Codeforces Round #197 (Div. 2) A~D
  • 原文地址:https://www.cnblogs.com/GoldenFingers/p/9107235.html
Copyright © 2011-2022 走看看