zoukankan      html  css  js  c++  java
  • ACM模板

    快速幂

    ll pow_mod(ll x,ll n,ll mod){ll res=1;while(n){if(n&1)res=res*x%mod;x=x*x%mod;n>>=1;}return res;}//xµÄn´Î·½mod
    template<typename T>void read(T &res){bool flag=false;char ch;while(!isdigit(ch=getchar()))(ch=='-')&&(flag=true);
    for(res=ch-48;isdigit(ch=getchar());res=(res<<1)+(res<<3)+ch - 48);flag&&(res=-res);}
    View Code

    矩阵快速幂

    const int MAXN = 10;
    #define int long long
    #define ll long long
    struct Matrix
    {
        ll mat[MAXN][MAXN];
    };
    Matrix P; 
    Matrix I; //单位矩阵
    Matrix Mul_Matrix(Matrix a, Matrix b , ll mod)
    {
        Matrix c;
        for(int i = 0 ; i < MAXN ; i ++)
            for(int j = 0 ; j < MAXN ; j ++)
            {
                c.mat[i][j] = 0;
                for(int k = 0 ; k < MAXN ; k ++)
                {
                    c.mat[i][j] += (a.mat[i][k] * b.mat[k][j]) % mod;
                    c.mat[i][j] %= mod;
                }
            }
        return c;
    }
    Matrix pow_mod_Matrix(Matrix P , ll n , ll mod)
    {
        Matrix ans = I, b = P;
        while(n)
        {
            if(n & 1) ans = Mul_Matrix(ans , b , mod);
            n >>= 1;
            b = Mul_Matrix(b , b , mod);
        }
        return ans;
    }
    void Matrix_init()
    {
        for(int i = 0 ; i < MAXN ; i ++) I.mat[i][i] = 1;
    }
    View Code

    gcd+lcm

    int gcd(int a,int b){return !b?a:gcd(b,a%b);}
    int lcm(int a,int b){return a/gcd(a,b)*b;}
    
    ///上面的大数被卡了,可以用下面的
    int gcd(int a , int b)
    {
        if(a == 0)return 1;
        if(a < 0) return gcd(-a , b);
        while(b)
        {
            ll t = a % b;
            a = b;
            b = t;
        }
        return a;
    }
    View Code

    逆元

    int inv_exgcd(int x , int mod)
    {
        int a , b;
        int re = exgcd(x , mod , a , b);
        if(a < 0) a += (-x / (mod / re) + 1) * (mod / re);
        return a;
    }
    int inv_pow(int x , int mod)
    {
        return pow_mod(x , mod - 2 , mod);
    }
    View Code

    exgcd

    int exgcd(int a , int b , int &x , int &y){
        if(! b){
            x = 1 , y = 0;
            return a;
        }
        int re = exgcd(b , a % b , y , x);
        y -= (a / b) * x;
        return re;
    }
    /*
    ax + by = c
    x *= c / gcd(a , b)
    y *= c/ gcd(a , b)
    任意解 :
    x = x0 + b / gcd(a , b) * t
    y = y0 - a / gcd(a , b) * t
    t 为任意数
    最小整数解x(y):
     ((x * c / gcd(a , b)) % (b / gcd(a , b)) + (b / gcd(a , b))) % (b / gcd(a , b))
    */
    View Code

    中国剩余定理crt(带龟速乘)

    int exgcd(int a , int b , int &x , int &y){
        if(! b){
            x = 1 , y = 0;
            return a;
        }
        int re = exgcd(b , a % b , y , x);
        y -= (a / b) * x;
        return re;
    }
    int Slow_Mul(int x , int y , int mod)///快速乘,避免爆ll
    {
        int ans = 0;
        int flag = 1;
        if((x < 0 && y > 0) || (x > 0 && y < 0))flag = -1;
        x = abs(x) , y = abs(y);
        while(y)
        {
            if(y & 1)ans += x % mod , ans %= mod;
            y >>= 1;
            x = (x + x) % mod;
        }
        return ((ans * flag) % mod + mod) % mod;
    }
    int Li[maxn] , Ti[maxn] , a[maxn] , b[maxn];
    int crt(int a[] , int b[] , int n) /// n个数 , a是除数 , b是余数 , 除数互质
    {
        int L = 1;
        for(int i = 1 ; i <= n ; i ++) L *= a[i];
        for(int i = 1 ; i <= n ; i ++) Li[i] = L / a[i];
        for(int i = 1 ; i <= n ; i ++){
            int x , y;
            int re = exgcd(Li[i] , a[i] , x , y);
            Ti[i] = x;
        }
        int ans = 0;
        for(int i = 1 ; i <= n ; i ++) ans += Slow_Mul(Slow_Mul(Li[i] ,  Ti[i] , L) , b[i] , L) , ans %= L;
        return (ans + L) % L;
    }
    View Code

    扩展中国剩余定理excrt(带龟速乘)

    int exgcd(int a , int b , int &x , int &y){
        if(! b){
            x = 1 , y = 0;
            return a;
        }
        int re = exgcd(b , a % b , y , x);
        y -= (a / b) * x;
        return re;
    }
    int inv_exgcd(int x , int mod)
    {
        int a , b;
        int re = exgcd(x , mod , a , b);
        if(a < 0) a += (-x / (mod / re) + 1) * (mod / re);
        return a;
    }
    int inv_pow(int x , int mod)
    {
        return pow_mod(x , mod - 2 , mod);
    }
    int Slow_Mul(int x , int y , int mod)///快速乘,避免爆ll
    {
        int ans = 0;
        int flag = 1;
        if((x < 0 && y > 0) || (x > 0 && y < 0))flag = -1;
        x = abs(x) , y = abs(y);
        while(y)
        {
            if(y & 1)ans += x % mod , ans %= mod;
            y >>= 1;
            x = (x + x) % mod;
        }
        return ((ans * flag) % mod + mod) % mod;
    }
    int excrt(int a[] , int b[] , int n) /// n个数 , a是除数 , b是余数 , 除数不互质
    {
        for(int i = 2 ; i <= n ; i ++) {
            int a1 = a[i - 1] , a2 = a[i] , b1 = b[i - 1] , b2 = b[i];
            int re = gcd(a1 , a2);///11
            if(abs(b2 - b1) % re != 0) return -1;
            a[i] = a1 / re * a2;
            b[i] = Slow_Mul(Slow_Mul(inv_exgcd(a1 / re , a2 / re) , ((b2 - b1) / re) , (a2 / re))  ,  a1 , a[i]) + b1 % a[i];
    
            b[i] = (b[i] % a[i] + a[i]) % a[i];
        }
        return b[n];
    }
    View Code

    Pointard_Rhod定理(大数质因子分解)

    #define int long long 
    int S = 50;
    int Slow_Mod(int a , int b , int mod)
    {
        a %= mod , b %= mod;
        int res = 0;
        while(b)
        {
            if(b & 1)res += a , res %= mod;
            a <<= 1 , a %= mod;
            b >>= 1;
        }
        return res;
    }
    //计算  x^n %c
    int pow_mod(int x , int n , int mod)//x^n%c
    {
        x %= mod , n %= mod;
        int res = 1;
        while(n)
        {
            if(n & 1) res = Slow_Mod(res , x , mod);
            x = Slow_Mod(x , x , mod);
            n >>= 1;
        }
        return res;
    }
    //以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
    //一定是合数返回true,不一定返回false
    bool check(int a , int n , int x , int t)
    {
        int res = pow_mod(a , x , n);
        int last = res;
        for(int i = 1 ; i <= t ; i ++)
        {
            res = Slow_Mod(res , res , n);
            if(res == 1 && last != 1 && last != n - 1) return true;//合数
            last = res;
        }
        if(res != 1) return true;
        return false;
    }
    // Miinter_Rabin()算法素数判定
    //是素数返回true.(可能是伪素数,但概率极小)
    //合数返回false;
    bool Miinter_Rabin(int n)
    {
        if(n < 2)return false;
        if(n == 2)return true;
        if((n & 1) == 0) return false;//偶数
        int x = n - 1;
        int t = 0;
        while((x & 1) == 0) x >>= 1 , t ++;
        for(int i = 0 ; i < S ; i ++)
        {
            int a = rand() % (n - 1) + 1;//rand()需要stdlib.h头文件
            if(check(a , n , x , t))
                return false;//合数
        }
        return true;
    }
    //************************************************
    //pointard_rho 算法进行质因数分解,先判是否是素数,特判 1、2 
    //************************************************
    int Fac[100];//质因数分解结果(刚返回时是无序的)
    int tol;//质因数的个数。数组小标从0开始
    int gcd(int a , int b)///不要用迭代会TLE 
    {
        if(a == 0)return 1;
        if(a < 0) return gcd(-a , b);
        while(b)
        {
            int t = a % b;
            a = b;
            b = t;
        }
        return a;
    }
    int Pointard_Rho(int x , int c)
    {
        int i = 1 , k = 2;
        int x0 = rand() % x;
        int y = x0;
        while(1)
        {
            i ++;
            x0 = (Slow_Mod(x0 , x0 , x) + c) % x;
            int d = gcd(y - x0 , x);
            if(d != 1 && d != x) return d;
            if(y == x0) return x;
            if(i == k)y = x0 , k += k;
        }
    }
    //对n进行素因子分解 , 特判2,先用米勒罗宾判是不是质数 
    void Find_Prime_Fac(int n)
    {
        if(Miinter_Rabin(n))//素数
        {
            Fac[tol ++]=n;
            return;
        }
        int p = n;
        while(p >= n)p = Pointard_Rho(p , rand() % (n - 1) + 1);
        Find_Prime_Fac(p);
        Find_Prime_Fac(n / p);
    }
    View Code

    欧拉筛

    int prime[maxn],minprime[maxn];
    int euler(int n)
    {int c=0,i,j;for(i=2;i<=n;i++){if(!minprime[i])prime[++c]=i,minprime[i]=i;for(j=1;j<=c&&i*prime[j]<=n;j++)
    {minprime[i*prime[j]]=prime[j];if(i%prime[j]==0)break;}}return c;}
    View Code

    积性函数线性筛

    void init()
    {
        low[1] = f[1] = 1;
        for(int i = 2 ; i <= maxn - 10 ; i ++){
            if(!vis[i]){
                vis[i] = 1 , low[i] = i , f[i] = 2 * i - 1 , prime[++ cnt] = i , k[i] = 1;
            ////low->最小质因子(带指数)即p1^k1 ,  f->积性函数 , k -> 记录次方,即最小质因子的指数是多少 
            } 
            for(int j = 1 ; j <= cnt && prime[j] * i < maxn ; j ++){
                vis[prime[j] * i] = 1;
                if(i % prime[j] == 0){///即 gcd(i , prime[j]) = p1
                    low[i * prime[j]] = low[i] * prime[j];///p1^k1再乘上一个p1 
                    if(low[i] == i){///是否 是p^k 
                        k[prime[j] * i] = k[i] + 1;
                        ///p^k公式 
                        f[i * prime[j]] = (k[i * prime[j]] + 1) * i * prime[j] - k[i * prime[j]] * i;
                    }
                    else{/// prime[j]==p1 
                        f[i * prime[j]] = f[i / low[i]] * f[low[i] * prime[j]];///另一个公式 
                    }
                    break;
                }
                else{
                    f[i * prime[j]] = f[i] * f[prime[j]];
                    low[i * prime[j]] = prime[j];//prime[j] < p1 
                }
                
            } 
        }
    }
    View Code
  • 相关阅读:
    团队项目-需求分析报告
    自动化测试框架指南
    一起吐槽接口文档
    居家费拖鞋【FunTester居家日记】
    HTTP接口测试基础【FunTester框架教程】
    Java NIO在接口自动化中应用
    JAVA 可变参数
    HashSet 和 LinkedSet 数据结构
    简单数据结构
    JAVA 迭代器的简单使用
  • 原文地址:https://www.cnblogs.com/GoodVv/p/13691393.html
Copyright © 2011-2022 走看看