zoukankan      html  css  js  c++  java
  • DbCommand Extensions

    public static DbCommand AddInParameter(this DbCommand cmd, string parameterName, object value)
    {
    DbParameter para
    = cmd.CreateParameter();
    para.ParameterName
    = parameterName;
    para.Value
    = value ?? DBNull.Value;
    cmd.Parameters.Add(para);
    return cmd;
    }
    public static DbCommand AddInParameter(this DbCommand cmd, string parameterName, DbType type, int size, object value)
    {
    DbParameter para
    = cmd.CreateParameter();
    para.ParameterName
    = parameterName;
    para.DbType
    = type;
    para.Size
    = size;
    para.Value
    = value ?? DBNull.Value;
    cmd.Parameters.Add(para);
    return cmd;
    }

    public static DbCommand AddOutParameter(this DbCommand cmd, string parameterName)
    {
    DbParameter para
    = cmd.CreateParameter();
    para.ParameterName
    = parameterName;
    para.Direction
    = ParameterDirection.Output;
    cmd.Parameters.Add(para);
    return cmd;
    }

    public static DbCommand SetReturnParameter(this DbCommand cmd)
    {
    return cmd.SetReturnParameter(DbType.Int32);
    }
    public static DbCommand SetReturnParameter(this DbCommand cmd, DbType type)
    {
    if (!cmd.Parameters.Contains(DbBase.ReturnParameterName))
    {
    DbParameter para
    = cmd.CreateParameter();
    para.ParameterName
    = DbBase.ReturnParameterName;
    para.DbType
    = type;
    para.Direction
    = ParameterDirection.ReturnValue;
    cmd.Parameters.Add(para);
    }
    return cmd;
    }
    public static DbParameter GetReturnParameter(this DbCommand cmd)
    {
    int index = cmd.Parameters.IndexOf(DbBase.ReturnParameterName);
    if (index != -1)
    {
    DbParameter returnParameter
    = cmd.Parameters[index];
    if (returnParameter.Direction == ParameterDirection.ReturnValue)
    {
    return returnParameter;
    }
    }
    return null;
    }
  • 相关阅读:
    foj 2111 Problem 2111 Min Number
    hdoj 1175 连连看
    poj 2377 Bad Cowtractors
    poj 3666 Making the Grade
    2018华南理工大学程序设计竞赛 H-对称与反对称
    hdoj 4293 Groups
    FOJ Problem 2273 Triangles
    poj 3411 Paid Roads
    Codeforces 235A. LCM Challenge
    离散对数二连 poj 2417 Discrete Logging & HDU 2815 Mod Tree
  • 原文地址:https://www.cnblogs.com/Googler/p/2049085.html
Copyright © 2011-2022 走看看