zoukankan      html  css  js  c++  java
  • 使用Tensorflow对波士顿房价进行预测(一元和多元)

    一元回归:

     1 import numpy as np
     2 import matplotlib.pyplot as plt
     3 import tensorflow as tf
     4 
     5 #加载数据集
     6 boston_housing = tf.keras.datasets.boston_housing
     7 (train_x,train_y),(test_x,test_y) = boston_housing.load_data()
     8 
     9 #数据处理
    10 x_train= train_x[:,5]   #取出训练集房间这个属性
    11 y_train = train_y      #为了和x_rain名字保持一致,重新命名
    12 
    13 x_test = test_x[:,5]    #取出测试集中房间数学
    14 y_test = test_y
    15 
    16 #设置超参数
    17 learn_rate = 0.04
    18 iter = 2000
    19 display_step=200
    20 
    21 #设置模型参数初始值
    22 np.random.seed(612)
    23 w = tf.Variable(np.random.randn)
    24 b = tf.Variable(np.random.randn)
    25 
    26 #训练模型
    27 mse_train = []   #记录训练误差
    28 mse_test = []     #记录测试误差
    29 
    30 for i in range(iter+1):
    31     with tf.GradientTape() as tape:
    32          #计算训练集的预测房价和误差
    33         pred_train = w*x_train +b
    34         loss_train = 0.5*tf.reduce_mean(tf.square(y_train-pred_train))
    35         
    36         #计算测试集的预测房价和误差
    37         pred_test = w*x_test +b
    38         loss_test = 0.5*tf.reduce_mean(tf.square(y_test-pred_test))
    39         
    40     mse_train.append(loss_train)
    41     mse_test.append(loss_test)
    42 
    43     dL_dw,dL_db = tape.gradient(loss_train, [w,b]) #第w和b进行求导
    44     w.assign_sub(learn_rate*dL_dw)             #更新w和b
    45     b.assign_sub(learn_rate*dL_db)
    46 
    47     if i % display_step == 0:
    48         print('i: %i, Train_loss:%f, Test_loss: %f' % (i,loss_train,loss_test))
    49 
    50             
    51 #可视化输出
    52 plt.figure(figsize=(20,10))
    53 
    54 plt.subplot(221)
    55 plt.scatter(x_train,y_train, color='blue', label = 'data')
    56 plt.plot(x_train,pred_train, color = 'red', label='model')
    57 plt.legend(loc='upper left')
    58 plt.title('训练集散点图和模型直线',fontsize = 20)
    59 
    60 plt.subplot(222)
    61 plt.plot(mse_train, color='blue',linewidth=3, label='train_loss')
    62 plt.plot(mse_test, color='red',linewidth=1.5, label='test_loss')
    63 plt.legend(loc='upper right')
    64 plt.title('训练误差和测试误差',fontsize = 20)
    65 
    66 plt.subplot(223)
    67 plt.plot(y_train,color='blue', marker='o', label='true_price')
    68 plt.plot(pred_train, color ='red', marker='.', label='predict')
    69 plt.legend()
    70 plt.title('训练数据集房价和训练数据集预测房价',fontsize = 20)
    71 
    72 plt.subplot(224)
    73 plt.plot(y_test, color='blue', marker='o', label='true_price')
    74 plt.plot(pred_test, color='red', marker='.', label='predict')
    75 plt.legend()
    76 plt.title('测试数据集房价和测试数据集预测房价',fontsize = 20)
    77 
    78 plt.show()

     

    多元回归:

     1 import numpy as np
     2 import matplotlib.pyplot as plt
     3 import tensorflow as tf
     4 
     5 #加载数据集
     6 boston_housing = tf.keras.datasets.boston_housing
     7 (train_x,train_y),(test_x,test_y) = boston_housing.load_data()
     8 
     9 num_train=len(train_x)   #训练集和测试机中样本的数量
    10 num_test=len(test_x)
    11 
    12 #对训练样本和测试样本进行标准化(归一化),这里有用到张量的广播运算机制
    13 x_train=(train_x-train_x.min(axis=0))/(train_x.max(axis=0)-train_x.min(axis=0))
    14 y_train = train_y
    15 
    16 x_test=(test_x-test_x.min(axis=0))/(test_x.max(axis=0)-test_x.min(axis=0))
    17 y_test = test_y
    18 
    19 #生成多元回归需要的二维形式
    20 x0_train = np.ones(num_train).reshape(-1,1)
    21 x0_test = np.ones(num_test).reshape(-1,1)
    22 
    23     #对张量数据类型转换和进行堆叠
    24 X_train = tf.cast(tf.concat([x0_train,x_train],axis=1), tf.float32)
    25 X_test = tf.cast(tf.concat([x0_test, x_test], axis=1), tf.float32)
    26 
    27 #将房价转换为列向量
    28 Y_train = tf.constant(y_train.reshape(-1,1), tf.float32)
    29 Y_test = tf.constant(y_test.reshape(-1,1), tf.float32)
    30 
    31 #设置超参数
    32 learn_rate = 0.01
    33 iter = 2000
    34 display_step=200
    35 
    36 #设置模型变量初始值
    37 np.random.seed(612)
    38 W = tf.Variable(np.random.randn(14,1), dtype = tf.float32)
    39 
    40 #训练模型
    41 mse_train=[]
    42 mse_test=[]
    43 
    44 for i in range(iter+1):
    45     with tf.GradientTape() as tape:
    46         PRED_train = tf.matmul(X_train,W)
    47         Loss_train = 0.5*tf.reduce_mean(tf.square(Y_train-PRED_train))
    48         
    49         PRED_test = tf.matmul(X_test,W)
    50         Loss_test = 0.5*tf.reduce_mean(tf.square(Y_test-PRED_test))
    51         
    52     mse_train.append(Loss_train)
    53     mse_test.append(Loss_test)
    54     
    55     dL_dW = tape.gradient(Loss_train, W)
    56     W.assign_sub(learn_rate*dL_dW)
    57     
    58     if i % display_step == 0:
    59         print('i: %i, Train_loss:%f, Test_loss: %f' % (i,loss_train,loss_test))
    60         
    61     
    62 #可视化输出
    63 plt.figure(figsize=(20,10))
    64 
    65 plt.subplot(221)
    66 plt.ylabel('MSE')
    67 plt.plot(mse_train,color = 'blue',linewidth=3)
    68 plt.plot(mse_test,color = 'red',linewidth=3)
    69 plt.title('训练误差和测试误差',fontsize = 20)
    70 
    71 plt.subplot(222)
    72 plt.ylabel('Price')
    73 plt.plot(y_train,color='blue', marker='o', label='true_price')
    74 plt.plot(PRED_train, color ='red', marker='.', label='predict')
    75 plt.legend()
    76 plt.title('训练数据集房价和训练数据集预测房价',fontsize = 20)
    77 
    78 plt.subplot(223)
    79 plt.ylabel('Price')
    80 plt.plot(y_test, color='blue', marker='o', label='true_price')
    81 plt.plot(PRED_test, color='red', marker='.', label='predict')
    82 plt.legend()
    83 plt.title('测试数据集房价和测试数据集预测房价',fontsize = 20)
    84 
    85 plt.show()

     

    --------------------成功,肯定是需要一点一滴积累的--------------------
  • 相关阅读:
    【数字图像处理】技术总结
    【数字图像处理】图像细化处理
    【数字图像处理】图像开运算与闭运算
    【数字图像处理】 灰度共生矩阵特征分析法
    【数字图像处理】纹理特征分析基础
    【数字图像处理】图像的水平与垂直投影
    【数字图像处理】图像的面积与周长计算
    【数字图像处理】边界跟踪算法
    通过Nginx统计网站的PV、UV、IP
    Nginx日志配置
  • 原文地址:https://www.cnblogs.com/GouQ/p/12692849.html
Copyright © 2011-2022 走看看