zoukankan      html  css  js  c++  java
  • bzoj2554

    题意

    有n个球排成一列,每个球都有一个颜色,用A-Z的大写字母来表示,我们每次随机选出两个球ball1,ball2,使得后者染上前者的颜色,求期望操作多少次,才能使得所有球的颜色都一样?
    输出保留一位小数。

    做法

    单独考虑每种颜色

    设当前颜色个数为(i),令(g_i)为到达目标状态的概率,有(g_i=frac{1}{2}(g_{i-1}+g_{i+1})),边界(g_0=0,g_n=1)

    同理,令(f_i)为到达目标状态的期望步数,这里的期望指到达目标状态的,所以对于每种转移,还得算起能到达目标状态的概率

    [f_i=frac{n(n-1)}{2i(n-i)}+frac{1}{frac{1}{2}g_{i-1}+frac{1}{2}g_{i+1}}(frac{1}{2}g_{i-1}f_{i-1}+frac{1}{2}g_{i+1}f_{i+1}) ]

    然后有个结论是:(g_i=frac{i}{n}),可进一步化简成

    [f_i=frac{n(n-1)}{2i(n-i)}+frac{i-1}{2i}f_{i-1}+frac{i+1}{2i}f_{i+1} ]

  • 相关阅读:
    利用shell脚本实现免密认证
    利用shell脚本实现https证书认证
    高级sed命令
    Zabbix自定义监控
    Zabbix三种邮箱告警配置
    Zabbix配置
    监控服务Zabbix部署
    Ftp
    Samba
    NFS
  • 原文地址:https://www.cnblogs.com/Grice/p/12548764.html
Copyright © 2011-2022 走看看