zoukankan      html  css  js  c++  java
  • jzoj5746

    题意

    给定(p,k)(T)次查询,每次询问给定(n),求(sumlimits_{i=1}^n i^k(\%~p))。((2le n,m,kle 10^{18},1le Tle 3*10^3)(p)最大质因子不超过(3*10^5)

    做法

    (p)最大质因子不超过(3*10^5),直接暴力分解一下(p=prod p_i^{a_i})

    单独考虑一个(p_i^{a_i}),这个(i)跟下面那个不同啊,由于容易区分就不管重名了

    [egin{aligned}\ sumlimits_{i=1}^n j^k&=sumlimits_{i=1}^n (ap_i+b)^k\ &=sumlimits_{i=1}^n sumlimits_{j=0}^{min(k,a_i)}{kchoose j}(ap_i)^j b^{k-j}\ &=sumlimits_{j=0}^{min(k,a_i)}{kchoose j}p^j sumlimits_{i=1}^n a^j b^{k-j}\ &=sumlimits_{j=0}^{min(k,a_i)}{kchoose j}p^j (sumlimits_{a=0}^{frac{n}{p_i}-1} a^jsumlimits_{b=0}^{p_i-1}b^{k-j}+(frac{n}{p_i})^{j}sumlimits_{b=0}^{n\%p_i} b^{k-j})\ end{aligned}]

  • 相关阅读:
    CFgym102394I
    Infinite Fraction Path (后缀数组)
    2016ACM/ICPC亚洲区沈阳站-重现赛
    2sat学习笔记
    bzoj4176
    bzoj3309
    6C
    3U
    3T
    3R
  • 原文地址:https://www.cnblogs.com/Grice/p/12693168.html
Copyright © 2011-2022 走看看