题意
已知(m)次多项式(f(x))在(0,1,cdots ,m)处的取值分别为(f(0),f(1),cdots,f(m)),给定(n,x),求
(left(sum_{k=0}^ninom nkf(k)x^k(1-x)^{n-k} ight)mod998244353)
(nle 10^9,mle 2 imes 10^4)
做法一
令(Q(f)=left(sum_{k=0}^ninom nkf(k)x^k(1-x)^{n-k} ight))
- (f=x)有(Q(f)=nx)
证明:
(Q(x)=left(sum_{k=0}^ninom nkkx^k(1-x)^{n-k} ight))
(k{nchoose k}=kfrac{n}{k}{n-1choose k-1}=n{n-1choose k-1})
- (f=x^2)有(Q(f)=nx+n(n-1)x^2)
证明:
(k^2{nchoose k}=nk {n-1choose k-1}=n(k-1){n-1choose k-1}+n{n-1choose k-1}=n(n-1){n-2choose k-2}+n{n-1choose k-1})
顺着这个做法推
令(f(x)=sumlimits_{i=0}^m a_ix^i),特殊的,令(0^0=1):
(Ans=sumlimits_{i=1}^m a_isumlimits_{j=1}^i egin{Bmatrix}i\jend{Bmatrix}x_j)
暴力插值(O(m^2)),常数会很大,没去写了
做法二
类似做法一
将(f=x^{underline m})带进去,神奇的发现(Q(f)=n^{underline m}x^m)
令(f(x)=sumlimits_{i=0}^m a_ix^{underline i}),现在要考虑的就是求出(a_i)
令(b_i=a_i imes i!),则(f(x)=sumlimits_{i=0}^m b_i{xchoose i})
这类表达式有神奇的性质:( riangle^{(k)}f(0)=c_i)
展开后是卷积形式
做法三
与做法二的差别在于求(a_i)
(sumlimits_{i=0}^m f(i)x^i=sumlimits_{i=0}^m a_isumlimits_{j=i}^m x^j j^{underline i})
进一步化简
(sumlimits_{i=0}^m f(i)frac{x^i}{i!}=sumlimits_{i=0}^m a_isumlimits_{j=i}^m frac{x^j}{(j-i)!}=sumlimits_{i=0}^m a_ix_isumlimits_{j=0}^{infty} frac{x^j}{j!}=sumlimits_{i=0}^m a_ix_ie^x)
故((sumlimits_{i=0}^m f(i)frac{x^i}{i!})e^{-x}=sumlimits_{i=0}^m a_ix_i)
题外话
做法一大概是当年验题人的做法,被出题人点名卡掉了,不过式子挺优美的