题意
做法
定理1(Erdős–Gallai theorem):令(n)个点的度数序列降序后为({d}),(n)个点能形成图当且仅当:(sum d_i~is~even),(forall kin[1,n],sumlimits_{i=1}^k d_ile (k-1)k+sumlimits_{i=k+1}^n min(k,d_i))
证明:
右部分是上界,则任何图都满足
若满足数列,从前往后枚举每个点,向后向能连边的点连边
定理2(有向图):令(n)个点按出度降序排列,出度与入度分别为({a},{b}),(n)个点能形成有向图当且仅当:(forall kin[1,n]sumlimits_{i=1}^k a_ile sumlimits_{i=1}^k min(b_i,k-1)+sumlimits_{i=k+1}^n min(b_i,k))