zoukankan      html  css  js  c++  java
  • 期望$DP$ 方法总结

    期望(DP) 方法总结

    这个题目太大了,变化也层出不穷,这里只是我的一点心得,不定期更新!

    1. 递推式问题

    对于无穷进行的操作期望步数问题,一般可用递推式解决。
    对于一个问题(ans[x])
    我们可以考虑建立逻辑转移

    [ans[now] = Merge( Function(ans[now]) , Function(ans[other]) ) ]

    那么我们进行移项后,

    [ans[now] Delete Function(ans[now]) = Function(ans[other]) ]

    此时,分离了(ans[now])(ans[other]), 那么就构成了递推关系
    .
    然后,对于递推式,巧用 顺序枚举 与 倒序枚举, 来防止除0、溢出等问题。
    比较经典的就是POJ 2096 Collecting Bugs,它的原递推式:
    (f[i][j]*(sn-ij) = Function(f[i-1][j] , f[i][j-1] , f[i-1][j-1]))
    我们目标状态为(f[s][n]),那么当(i=s)(j=n)时就会出现除0的情况。
    一个比较巧妙的处理,改变状态含义,把它变为倒序处理:
    (f[i][j]*(ns-ij) = Function(f[i+1][j] , f[i][j+1] , f[i+1][j+1]))
    然后(f[s][n]=0),目标状态变为(f[0][0])从而避免了除0的问题。
    .
    例题:[SHOI2002]百事世界杯之旅POJ2096 Collecting Bugs

    2. 错位相减

    注意式子的特性,观察特定情况下是否可以直接算或者错位相减。
    注意式子的次数是否等差,当下表值达到一定程度时是否存在特殊计算方法。
    例如:
    (f[i]=f[i-1]p_b+p_a(f[i-1]+1)p_b+{p_a}^2(f[i-1]+2)p_b+....)
    那么有(p_af[i] = p_afp_b + {p_a}^2(f[i-1]+1)p_b + {p_a}^3(f[i-1]+2)p_b+...)
    然后错位相减可得:
    ((1-p_a)f[i] = p_b(f[i-1] + p_a + {p_a}^2 + {p_a}^3 + ....))
    此时出现了等比数列,套等比数列求和即可。
    一般错位相减后 各种数学公式套一波 就可以把无限变为有限 。
    例题:CF908D Arbitrary Arrangement

    3. 高斯消元

    这个真的是套路了,大家应该都会。
    对于一个(DP)方程式,
    若所有的转移方程式都形如(f(x) = Function_{i=1}^n f(i))
    那么直接移项,然后把每一个转移方程式当作一个方程,高斯消元即可。
    例题:[HNOI2013]游走[HNOI2011]XOR和路径

    4. 步骤移动转移

    当直接用所需状态设不出方程式的时候,考虑从当前状态移动一步的条件与概率
    那么状态变为(f[移动步数])
    转移为(f[step] ==(Function)==> f[step+1])
    以这个角度思考,很有可能会出现递推式,然后套用上面所说就可解出最终答案。
    例题:[六省联考2017]分手是祝愿

    5. 整数期望公式

    我们设答案(整数)为(x),期望答案为(E(x))(P(x ge i))表示答案大于等于(i)的概率,那么有:

    [E(x) = sum_{i = 1}^∞ P(x ge i) ]

    我们同时有:(P(i leq x-1) + P(i ge x) = 1)
    第一个公式中的无限看起来很吓人,但根据实际意义可以变为有限(答案不可能大于最大上限)。
    用这个公式可以将求解答案变为求解后缀和或者求解前缀和
    那么就改变了(DP)目标,有时候就可以帮助我们设计出可以转移的状态,最后套公式得解即可。
    例题:Luogu P3600 随机数生成器 (难度较大强行插入大佬的题解:戳我1戳我2)

  • 相关阅读:
    spring 条件装配
    git 工作用命令
    tomcat 在 server.xml 中配置数据源
    rancher + harbor + jenkins 自动化部署
    FHS 文件体系标准
    linux常用命令
    linux常用工具
    ts-node 执行报错,Cannot find module '@types/node/package.json'
    npm 安装报错 gyp: No Xcode or CLT version detected!
    css中的层级问题(z-index)
  • 原文地址:https://www.cnblogs.com/GuessYCB/p/8438554.html
Copyright © 2011-2022 走看看