zoukankan      html  css  js  c++  java
  • 【2020.12.01提高组模拟】卡特兰数(catalan)

    题目

    题目描述

    今天,接触信息学不久的小(A)刚刚学习了卡特兰数。

    卡特兰数的一个经典定义是,将(n)个数依次入栈,合法的出栈序列个数。

    (A)觉得这样的情况太平凡了。于是,他给出了(m)组限制,每个限制形如((f_i,g_i)),表示(f_i)不能在(g_i)之后出栈。
    他想求出:在满足了这(m)组限制的前提下,共有多少个合法的出栈序列。他不喜欢大数,你只需要求出答案在模(998244353)意义下的值即可。

    输入格式

    输入第一行为两个非负整数,(n)(m),含义题面已给出。
    接下来(m)行,每行两个正整数,((f,g)) 表示一组限制。

    输出格式

    输出一行,为一个非负整数,表示你求得的答案 (modspace 998244353)

    样例输入

    3 1
    2 3
    

    样例输出

    3
    

    样例解释
    可以验证({1,2,3})({2,1,3})({2,3,1})都是合乎条件的。

    数据规模

    (编号) (分值) (n) (m) (特殊性质)
    (1) (15) (le 300) (= 0)
    (2) (15) (le 7) (le 10)
    (3) (15) (le 100) (le 50)
    (4) (15) (le 300) (保证所有的f_i相同)
    (5) (20) (le 300) (le 300)
    (6) (20) (le 300)

    对于全部的数据,保证(nle 300)(mle frac{n(n-1)}{2})(f_i、g_i le n)

    题解

    题目大意:(n)个数以此入栈,问在满足(m)个形如(f_i)不能在(g_i)后出栈的限制的出栈序列数

    45%

    我们知道卡特兰数有个推导公式是(f_i=sum_{i=1}^nf_i imes f_{n-i-1}),这个公式实际上是枚举了最后出栈的数

    那么扩展到这题,我们将(dp)转换为区间(dp),枚举(k)为最后出栈的数,那么有两种情况不合法:(f=k)或者(f>k>g)。当(f=k)的时候,(f)是最后出栈的,显然不合法。而我们知道,小于(k)总是比大于(k)的先出栈,所以当(f>k>g)时也是不合法的

    (f[i][j])表示(i)(j)这个区间的合法出栈序列,那么在上述两种不合法的情况不成立的情况下,(f[i][j]+=f[i][k-1] imes f[k+1][j])

    时间复杂度(O(n^3m)),预计得分(45)

    100%

    考虑优化(dp),在(O(1))的时间内判断合不合法。不合法条件(f>k>g)成立,说明(f>g),那么在读入时(f>g)的放入平面直角坐标系中,坐标((f,g)),那么可以前缀和优化

    记录前缀和(sm[i][j])(l[i][j]),分别记录(f>g)以及所有的点,用来判断(f>k>g)(f=k)的情况

    构造一个矩形

    在这里插入图片描述

    其中(i,j,k)分别是区间起点,终点,以及最后出栈的数

    (f=k)说明(l[k][j]-l[k][i-1]>0),而如果矩形(sm(i,i,j,k-1)-sm(i,i,k,j)>0),说明有(f>k>g)的情况,这两种情况都是不合法的

    这样的话时间复杂度优化到了(O(n^3)),预计得分(100)

    Code

    #include<cstdio>
    #define mod 998244353
    #define N 310
    #define ll long long
    using namespace std;
    ll n,m,f[N][N],sm[N][N],al[N][N];
    ll get(ll x,ll y,ll p,ll q) {return sm[x][y]-sm[x][q-1]-sm[p-1][y]+sm[p-1][q-1];}
    int main()
    {
    	freopen("catalan.in","r",stdin);
    	freopen("catalan.out","w",stdout);
    	scanf("%lld%lld",&n,&m);
    	for (ll i=1,x,y;i<=m;++i)
    	{
    		scanf("%lld%lld",&x,&y);
    		if (x!=y)
    		{
    			if (x>y) ++sm[x][y];
    			++al[x][y];
    		}
    	}
    	for (ll i=1;i<=n;++i)
    		for (ll j=1;j<=n;++j)
    		{
    			sm[i][j]=sm[i][j]+sm[i-1][j]+sm[i][j-1]-sm[i-1][j-1];
    			al[i][j]=al[i][j]+al[i][j-1];
    		}
    	for (ll i=1;i<=n;++i)
    		f[i][i]=f[i+1][i]=f[i][i-1]=1;
    	for (ll len=2;len<=n;++len)
    		for (ll i=1;i+len-1<=n;++i)
    		{
    			ll j=i+len-1;
    			for (ll k=i;k<=j;++k)
    			{
    				ll x;
    				if (k>i) x=get(j,k-1,i,i)-get(k,j,i,i);
    				else x=0;
    				ll y=al[k][j]-al[k][i-1];
    				if (x<=0&&y<=0) f[i][j]=(f[i][j]+f[i][k-1]*f[k+1][j]%mod)%mod;
    			}
    		}
    	printf("%lld
    ",f[1][n]);
    	fclose(stdin);
    	fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    Blend3中创建的Silverlight程序在设计模式下无法显示图片的解决办法
    创建Silverlight Bussiness Application时报错的解决
    .NET 2.0 字符串比较
    ASP.NET 客户端缓存
    AjaxPro部署成功
    遭遇反序列化异常:"在分析完成之前就遇到流结尾"
    正则表达式
    哈哈,终于申请获得批准了!
    ClientScript.RegisterClientScriptInclude注册脚本
    今天经过一场深有体会的谈话终于决定了我2012的方向
  • 原文地址:https://www.cnblogs.com/H-K-H/p/14073646.html
Copyright © 2011-2022 走看看