zoukankan      html  css  js  c++  java
  • ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法

    POJ 2739 Sum of Consecutive Prime Numbers
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu
     

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2

    /*/
    题意:
    求连续素数和.
    有多少种方法可以选取连续的素数,使这些数的和正好为n 思路:
    1到10000的素数表打出来,然后直接尺取就可以了,很简单的一道题目。 /
    */
    #include"map"
    #include"cmath"
    #include"string"
    #include"cstdio"
    #include"vector"
    #include"cstring"
    #include"iostream"
    #include"algorithm"
    using namespace std;
    typedef long long LL;
    const int MX=1000005;
    #define memset(x,y) memset(x,y,sizeof(x))
    #define FK(x) cout<<"【"<<x<<"】"<<endl
    
    int vis[MX];
    int prim[MX];
    int ans[MX];
    int main() {
    	int n,len=0,sum=0;
    	for(int i=2; i<=100; i++)
    		if(!vis[i])
    			for(int j=2; j<=10000; j++)
    				vis[j*i]=1;
    	for(int i=2; i<=10000; i++)
    		if(vis[i]==0)    {
    			len++;
    			prim[len]=i;
    		}
    	for(int i=1; i<=len; i++)   {
    		sum=0;
    		int j=i;
    		while(sum<=10000 && j<=1229) {
    			sum+=prim[j];
    			if(sum>10000)
    				break;
    			ans[sum]++;
    			j++;
    		}
    	}
    	while(~scanf("%d",&n)) {
    		if(!n)break;
    		printf("%d
    ",ans[n]);
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    跳转练习
    从入门到自闭之Python--Redis
    从入门到自闭之Python--Django Rest_Framework
    从入门到自闭之Python--RESTful API规范与序列化
    从入门到自闭之Python--虚拟环境如何安装
    从入门到自闭之Python集合,深浅拷贝(大坑)
    从入门到自闭之Python编码
    从入门到自闭之Python字典如何使用
    从入门到自闭之Python列表,元祖及range
    从入门到自闭之Python整型,字符串以及for循环
  • 原文地址:https://www.cnblogs.com/HDMaxfun/p/5731527.html
Copyright © 2011-2022 走看看