zoukankan      html  css  js  c++  java
  • R语言中aggregate函数

    前言

    这个函数的功能比较强大,它首先将数据进行分组(按行),然后对每一组数据进行函数统计,最后把结果组合成一个比较nice的表格返回。根据数据对象不同它有三种用法,分别应用于数据框(data.frame)、公式(formula)和时间序列(ts):

        aggregate(x, by, FUN, ..., simplify = TRUE)
        aggregate(formula, data, FUN, ..., subset, na.action = na.omit)
        aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1, ts.eps = getOption("ts.eps"), ...)
    简例:

    x=data.frame(name=c("张三","李四","王五","赵六"),sex=c("M","M","F","F"),age=c(20,40,22,30),height=c(166,170,150,155))
    c <- aggregate(x[,3:4],by=list(sex=x$sex),FUN=sum)

     

    语法

        aggregate(x, ...)
         
        ## S3 method for class 'default':
        aggregate((x, ...))
        
        ## S3 method for class 'data.frame':
        aggregate((x, by, FUN, ..., simplify = TRUE))
        
        ## S3 method for class 'formula':
        aggregate((formula, data, FUN, ...,
                  subset, na.action = na.omit))
        
        ## S3 method for class 'ts':
        aggregate((x, nfrequency = 1, FUN = sum, ndeltat = 1,
                  ts.eps = getOption("ts.eps"), ...))
    
        ###细节查看  ?aggregate

    Example1

    我们通过 mtcars 数据集的操作对这个函数进行简单了解。mtcars 是不同类型汽车道路测试的数据框类型数据:

        > str(mtcars)
        'data.frame': 32 obs. of 11 variables:
        $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
        $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
        $ disp: num 160 160 108 258 360 ...
        $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
        $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
        $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
        $ qsec: num 16.5 17 18.6 19.4 17 ...
        $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
        $ am : num 1 1 1 0 0 0 0 0 0 0 ...
        $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
        $ carb: num 4 4 1 1 2 1 4 2 2 4 ...

    先用attach函数把mtcars的列变量名称加入到变量搜索范围内,然后使用aggregate函数按cyl(汽缸数)进行分类计算平均值:

        > attach(mtcars)
        > aggregate(mtcars, by=list(cyl), FUN=mean)
        Group.1 mpg cyl disp hp drat wt qsec vs am gear carb
        1 4 26.66364 4 105.1364 82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909 1.545455
        2 6 19.74286 6 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143 3.428571
        3 8 15.10000 8 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714 3.500000

    by参数也可以包含多个类型的因子,得到的就是每个不同因子组合的统计结果:

        > aggregate(mtcars, by=list(cyl, gear), FUN=mean)
        
        Group.1 Group.2 mpg cyl disp hp drat wt qsec vs am gear carb
        1 4 3 21.500 4 120.1000 97.0000 3.700000 2.465000 20.0100 1.0 0.00 3 1.000000
        2 6 3 19.750 6 241.5000 107.5000 2.920000 3.337500 19.8300 1.0 0.00 3 1.000000
        3 8 3 15.050 8 357.6167 194.1667 3.120833 4.104083 17.1425 0.0 0.00 3 3.083333
        4 4 4 26.925 4 102.6250 76.0000 4.110000 2.378125 19.6125 1.0 0.75 4 1.500000
        5 6 4 19.750 6 163.8000 116.5000 3.910000 3.093750 17.6700 0.5 0.50 4 4.000000
        6 4 5 28.200 4 107.7000 102.0000 4.100000 1.826500 16.8000 0.5 1.00 5 2.000000
        7 6 5 19.700 6 145.0000 175.0000 3.620000 2.770000 15.5000 0.0 1.00 5 6.000000
        8 8 5 15.400 8 326.0000 299.5000 3.880000 3.370000 14.5500 0.0 1.00 5 6.000000

    公式(formula)是一种特殊的R数据对象,在aggregate函数中使用公式参数可以对数据框的部分指标进行统计:

        > aggregate(cbind(mpg,hp) ~ cyl+gear, FUN=mean)
        cyl gear mpg hp
        1 4 3 21.500 97.0000
        2 6 3 19.750 107.5000
        3 8 3 15.050 194.1667
        4 4 4 26.925 76.0000
        5 6 4 19.750 116.5000
        6 4 5 28.200 102.0000
        7 6 5 19.700 175.0000
        8 8 5 15.400 299.5000

    上面的公式 cbind(mpg,hp) ~ cyl+gear 表示使用 cyl 和 gear 的因子组合对 cbind(mpg,hp) 数据进行操作。aggregate在时间序列数据上的应用请参考R的函数说明文档。

    Example2

        ## Compute the averages for the variables in 'state.x77', grouped
        ## according to the region (Northeast, South, North Central, West) that
        ## each state belongs to.
        aggregate(state.x77, list(Region = state.region), mean)
         
        ## Compute the averages according to region and the occurrence of more
        ## than 130 days of frost.
        aggregate(state.x77,
                  list(Region = state.region,
                       Cold = state.x77[,"Frost"] > 130),
                  mean)
        ## (Note that no state in 'South' is THAT cold.)
         
        
        ## example with character variables and NAs
        testDF <- data.frame(v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
                             v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99) )
        by1 <- c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12)
        by2 <- c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)
        aggregate(x = testDF, by = list(by1, by2), FUN = "mean")
         
        # and if you want to treat NAs as a group
        fby1 <- factor(by1, exclude = "")
        fby2 <- factor(by2, exclude = "")
        aggregate(x = testDF, by = list(fby1, fby2), FUN = "mean")
         
         
        ## Formulas, one ~ one, one ~ many, many ~ one, and many ~ many:
        aggregate(weight ~ feed, data = chickwts, mean)
        aggregate(breaks ~ wool + tension, data = warpbreaks, mean)
        aggregate(cbind(Ozone, Temp) ~ Month, data = airquality, mean)
        aggregate(cbind(ncases, ncontrols) ~ alcgp + tobgp, data = esoph, sum)
         
        ## Dot notation:
        aggregate(. ~ Species, data = iris, mean)
        aggregate(len ~ ., data = ToothGrowth, mean)
         
        ## Often followed by xtabs():
        ag <- aggregate(len ~ ., data = ToothGrowth, mean)
        xtabs(len ~ ., data = ag)
         
         
        ## Compute the average annual approval ratings for American presidents.
        aggregate(presidents, nfrequency = 1, FUN = mean)
        ## Give the summer less weight.
        aggregate(presidents, nfrequency = 1,
                  FUN = weighted.mean, w = c(1, 1, 0.5, 1))

    Example3

        ------------------------------------------------------
        #load data
        data <- ChickWeight
        head(data)
          weight Time Chick Diet
        1     42    0     1    1
        2     51    2     1    1
        3     59    4     1    1
        4     64    6     1    1
        5     76    8     1    1
        6     93   10     1    1
         
        #dimension of the data
        dim(data)
        [1] 578   4
         
        #how many chickens
        unique(data$Chick)
         [1] 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
        [31] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
        50 Levels: 18 < 16 < 15 < 13 < 9 < 20 < 10 < 8 < 17 < 19 < 4 < 6 < 11 < 3 < 1 < 12 < ... < 48
         
        #how many diets
        unique(data$Diet)
        [1] 1 2 3 4
        Levels: 1 2 3 4
         
        #how many time points
        unique(data$Time)
         [1]  0  2  4  6  8 10 12 14 16 18 20 21
         
        library(ggplot2)
        ggplot(data=data, aes(x=Time, y=weight, group=Chick, colour=Chick)) +
               geom_line() +
               geom_point()
    
        ------------------------------------------------------
    
        ## S3 method for class 'data.frame'
        ## aggregate(x, by, FUN, ..., simplify = TRUE)
        
        #find the mean weight depending on diet
        aggregate(data$weight, list(diet = data$Diet), mean)
          diet        x
        1    1 102.6455
        2    2 122.6167
        3    3 142.9500
        4    4 135.2627
         
        #aggregate on time
        aggregate(data$weight, list(time=data$Time), mean)
           time         x
        1     0  41.06000
        2     2  49.22000
        3     4  59.95918
        4     6  74.30612
        5     8  91.24490
        6    10 107.83673
        7    12 129.24490
        8    14 143.81250
        9    16 168.08511
        10   18 190.19149
        11   20 209.71739
        12   21 218.68889
         
        #use a different function
        aggregate(data$weight, list(time=data$Time), sd)
           time         x
        1     0  1.132272
        2     2  3.688316
        3     4  4.495179
        4     6  9.012038
        5     8 16.239780
        6    10 23.987277
        7    12 34.119600
        8    14 38.300412
        9    16 46.904079
        10   18 57.394757
        11   20 66.511708
        12   21 71.510273
         
        #we could also aggregate on time and diet
        head(aggregate(data$weight,
                       list(time = data$Time, diet = data$Diet),
                       mean
                      )
            )
          time diet        x
        1    0    1 41.40000
        2    2    1 47.25000
        3    4    1 56.47368
        4    6    1 66.78947
        5    8    1 79.68421
        6   10    1 93.05263
        tail(aggregate(data$weight,
                       list(time = data$Time, diet = data$Diet),
                       mean
                      )
            )
           time diet        x
        43   12    4 151.4000
        44   14    4 161.8000
        45   16    4 182.0000
        46   18    4 202.9000
        47   20    4 233.8889
        48   21    4 238.5556
         
        #to see the weights over time across different diets
        ggplot(data) + geom_line(aes(x=Time, y=weight, colour=Chick)) +
                     facet_wrap(~Diet) +
                     guides(col=guide_legend(ncol=3))
    
    
        ------------------------------------------------------

    Example4

    The aggregate function is more difficult to use, but it is included in the base R installation and does not require the installation of another package.

        # Get a count of number of subjects in each category (sex*condition)
        cdata <- aggregate(data["subject"], by=data[c("sex","condition")], FUN=length)
        cdata
        #>   sex condition subject
        #> 1   F   aspirin       5
        #> 2   M   aspirin       9
        #> 3   F   placebo      12
        #> 4   M   placebo       4
        
        # Rename "subject" column to "N"
        names(cdata)[names(cdata)=="subject"] <- "N"
        cdata
        #>   sex condition  N
        #> 1   F   aspirin  5
        #> 2   M   aspirin  9
        #> 3   F   placebo 12
        #> 4   M   placebo  4
        
        # Sort by sex first
        cdata <- cdata[order(cdata$sex),]
        cdata
        #>   sex condition  N
        #> 1   F   aspirin  5
        #> 3   F   placebo 12
        #> 2   M   aspirin  9
        #> 4   M   placebo  4
        
        # We also keep the __before__ and __after__ columns:
        # Get the average effect size by sex and condition
        cdata.means <- aggregate(data[c("before","after","change")], 
                                 by = data[c("sex","condition")], FUN=mean)
        cdata.means
        #>   sex condition   before     after    change
        #> 1   F   aspirin 11.06000  7.640000 -3.420000
        #> 2   M   aspirin 11.26667  5.855556 -5.411111
        #> 3   F   placebo 10.13333  8.075000 -2.058333
        #> 4   M   placebo 11.47500 10.500000 -0.975000
        
        # Merge the data frames
        cdata <- merge(cdata, cdata.means)
        cdata
        #>   sex condition  N   before     after    change
        #> 1   F   aspirin  5 11.06000  7.640000 -3.420000
        #> 2   F   placebo 12 10.13333  8.075000 -2.058333
        #> 3   M   aspirin  9 11.26667  5.855556 -5.411111
        #> 4   M   placebo  4 11.47500 10.500000 -0.975000
        
        # Get the sample (n-1) standard deviation for "change"
        cdata.sd <- aggregate(data["change"],
                              by = data[c("sex","condition")], FUN=sd)
        # Rename the column to change.sd
        names(cdata.sd)[names(cdata.sd)=="change"] <- "change.sd"
        cdata.sd
        #>   sex condition change.sd
        #> 1   F   aspirin 0.8642916
        #> 2   M   aspirin 1.1307569
        #> 3   F   placebo 0.5247655
        #> 4   M   placebo 0.7804913
        
        # Merge
        cdata <- merge(cdata, cdata.sd)
        cdata
        #>   sex condition  N   before     after    change change.sd
        #> 1   F   aspirin  5 11.06000  7.640000 -3.420000 0.8642916
        #> 2   F   placebo 12 10.13333  8.075000 -2.058333 0.5247655
        #> 3   M   aspirin  9 11.26667  5.855556 -5.411111 1.1307569
        #> 4   M   placebo  4 11.47500 10.500000 -0.975000 0.7804913
        
        # Calculate standard error of the mean
        cdata$change.se <- cdata$change.sd / sqrt(cdata$N)
        cdata
        #>   sex condition  N   before     after    change change.sd change.se
        #> 1   F   aspirin  5 11.06000  7.640000 -3.420000 0.8642916 0.3865230
        #> 2   F   placebo 12 10.13333  8.075000 -2.058333 0.5247655 0.1514867
        #> 3   M   aspirin  9 11.26667  5.855556 -5.411111 1.1307569 0.3769190
        #> 4   M   placebo  4 11.47500 10.500000 -0.975000 0.7804913 0.3902456

    If you have NA’s in your data and wish to skip them, use na.rm=TRUE:

        cdata.means <- aggregate(data[c("before","after","change")], 
                                 by = data[c("sex","condition")],
                                 FUN=mean, na.rm=TRUE)
        cdata.means
        #>   sex condition   before     after    change
        #> 1   F   aspirin 11.06000  7.640000 -3.420000
        #> 2   M   aspirin 11.26667  5.855556 -5.411111
        #> 3   F   placebo 10.13333  8.075000 -2.058333
        #> 4   M   placebo 11.47500 10.500000 -0.975000
  • 相关阅读:
    Word+PS制作拼音表格
    VC6.0 突然打不开dsw 工程文件的解决方案
    C# 字符串的连接
    ASP.NET中弹出消息框的几种常见方法
    用五分钟重温委托,匿名方法,Lambda,泛型委托,表达式树
    WPF 显示模态窗口和窗体
    mysql5.5安装图解
    Microsoft Visual Studio 2010 Service Pack 1(exe)
    HTTP错误 404.17
    2014-2-7
  • 原文地址:https://www.cnblogs.com/HISAK/p/11770568.html
Copyright © 2011-2022 走看看