zoukankan      html  css  js  c++  java
  • 刷题-力扣-221. 最大正方形

    221. 最大正方形

    题目链接

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/maximal-square/
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    题目描述

    在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

    示例 1:

    输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
    输出:4
    

    示例 2:

    输入:matrix = [["0","1"],["1","0"]]
    输出:1
    

    示例 3:

    输入:matrix = [["0"]]
    输出:0
    

    提示:

    • m == matrix.length
    • n == matrix[i].length
    • 1 <= m, n <= 300
    • matrix[i][j] 为 '0' 或 '1'

    题目分析

    1. 根据题目描述计算二维矩阵内最大的‘1’组成的正方形的面积
    2. 假设f(x,y)表示以(x,y)结尾的正方形的维数,
      当matrix[x][y]=0时,f(x,y)=0
      当matrix[x][y]=1时,f(x,y)=min{f(x-1,y), f(x-1,y-1), f(x,y-1)}+1
    3. 边界条件
      当x=0或y=0时,f(x,y)=matrix[x][y]

    代码

    class Solution {
    public:
        int maximalSquare(vector<vector<char>>& matrix) {
            int m = matrix.size();
            int n = matrix[0].size();
            vector<vector<int>> dp(m, vector<int>(n, 0));
            int maxSquare = 0;
            for (int i = 0; i < m; ++i) {
                if (matrix[i][0] == '1') dp[i][0] = 1;
                maxSquare = max(dp[i][0], maxSquare);
            }
            for (int j = 0; j < n; ++j) {
                if (matrix[0][j] == '1') dp[0][j] = 1;
                maxSquare = max(dp[0][j], maxSquare);
            }
            for (int i = 1; i < m; ++i) {
                for (int j = 1; j < n; ++j) {
                    if (matrix[i][j] == '1') {
                        dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j]);
                        dp[i][j] = min(dp[i][j], dp[i][j - 1]) + 1;
                        maxSquare = max(dp[i][j], maxSquare);
                    }
                }
            }
            return maxSquare * maxSquare;
        }
    };
    
  • 相关阅读:
    react hooks子给父传值
    npm安装依赖 and 删除依赖
    react 阻止事件冒泡
    http 500状态码
    vue中插槽slot的使用
    怎样在vue项目中使用axios处理接口请求
    GET 与 POST 其实没有什么区别
    LazyMan
    什么是微服务,什么是分布式
    思索 p5.js 的最佳实践
  • 原文地址:https://www.cnblogs.com/HanYG/p/14798890.html
Copyright © 2011-2022 走看看