3891: [Usaco2014 Dec]Piggy Back
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 116 Solved: 92
[Submit][Status][Discuss]
Description
Bessie and her sister Elsie graze in different fields during the day, and in the evening they both want to walk back to the barn to rest. Being clever bovines, they come up with a plan to minimize the total amount of energy they both spend while walking. Bessie spends B units of energy when walking from a field to an adjacent field, and Elsie spends E units of energy when she walks to an adjacent field. However, if Bessie and Elsie are together in the same field, Bessie can carry Elsie on her shoulders and both can move to an adjacent field while spending only P units of energy (where P might be considerably less than B+E, the amount Bessie and Elsie would have spent individually walking to the adjacent field). If P is very small, the most energy-efficient solution may involve Bessie and Elsie traveling to a common meeting field, then traveling together piggyback for the rest of the journey to the barn. Of course, if P is large, it may still make the most sense for Bessie and Elsie to travel separately. On a side note, Bessie and Elsie are both unhappy with the term "piggyback", as they don't see why the pigs on the farm should deserve all the credit for this remarkable form of transportation. Given B, E, and P, as well as the layout of the farm, please compute the minimum amount of energy required for Bessie and Elsie to reach the barn.
Input
Output
Sample Input
1 4
2 3
3 4
4 7
2 5
5 6
6 8
7 8
Sample Output
HINT
Source
1 /************************************************************** 2 Problem: 3891 3 User: HansBug 4 Language: Pascal 5 Result: Accepted 6 Time:196 ms 7 Memory:6608 kb 8 ****************************************************************/ 9 10 type 11 point=^node; 12 node=record 13 g,w:longint; 14 next:point; 15 end; 16 map=array[0..50000] of point; 17 arr=array[0..50000] of longint; 18 var 19 i,j,k,l,m,n,a1,a2,a3:longint; 20 a,b:map; 21 c,e,f,g:arr; 22 d:array[0..1000000] of longint; 23 function min(x,y:longint):longint;inline; 24 begin 25 if x<y then min:=x else min:=y; 26 end; 27 function max(x,y:longint):longint;inline; 28 begin 29 if x>y then max:=x else max:=y; 30 end; 31 procedure add(x,y,z:longint;var a:map);inline; 32 var p:point; 33 begin 34 new(p);p^.g:=y;p^.w:=z; 35 p^.next:=a[x];a[x]:=p; 36 end; 37 procedure spfa(x:longint;a:map;var c:arr);inline; 38 var f,r:longint;p:point; 39 begin 40 fillchar(g,sizeof(g),0); 41 fillchar(c,sizeof(c),0); 42 f:=1;r:=2;d[1]:=x;g[x]:=1;c[x]:=1; 43 while f<r do 44 begin 45 p:=a[d[f]]; 46 while p<>nil do 47 begin 48 if (c[p^.g]=0) or((c[p^.g]>0) and (c[p^.g]>(c[d[f]]+p^.w))) then 49 begin 50 c[p^.g]:=c[d[f]]+p^.w; 51 if g[p^.g]=0 then 52 begin 53 g[p^.g]:=1; 54 d[r]:=p^.g; 55 inc(r); 56 end; 57 end; 58 p:=p^.next; 59 end; 60 g[d[f]]:=0; 61 inc(f); 62 end; 63 for i:=1 to n do dec(c[i]); 64 end; 65 66 begin 67 readln(a1,a2,a3,n,m); 68 for i:=1 to n do a[i]:=nil; 69 for i:=1 to n do b[i]:=nil; 70 for i:=1 to m do 71 begin 72 readln(j,k); 73 add(j,k,1,a); 74 add(k,j,1,a); 75 end; 76 spfa(1,a,c); 77 spfa(2,a,e); 78 spfa(n,a,f); 79 l:=maxlongint; 80 for i:=1 to n do 81 if (c[i]<>-1) and (e[i]<>-1) and (f[i]<>-1) then 82 l:=min(l,a1*c[i]+a2*e[i]+a3*f[i]); 83 writeln(l); 84 end.