zoukankan      html  css  js  c++  java
  • 1734: [Usaco2005 feb]Aggressive cows 愤怒的牛

    1734: [Usaco2005 feb]Aggressive cows 愤怒的牛

    Time Limit: 5 Sec  Memory Limit: 64 MB
    Submit: 217  Solved: 175
    [Submit][Status][Discuss]

    Description

    Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?

    农夫 John 建造了一座很长的畜栏,它包括NN (2 <= N <= 100,000)个隔间,这些小隔间依次编号为x1,...,xN (0 <= xi <= 1,000,000,000). 但是,John的C (2 <= C <= N)头牛们并不喜欢这种布局,而且几头牛放在一个隔间里,他们就要发生争斗。为了不让牛互相伤害。John决定自己给牛分配隔间,使任意两头牛之间的最小距离尽可能的大,那么,这个最大的最小距离是什么呢

    Input

    * Line 1: Two space-separated integers: N and C * Lines 2..N+1: Line i+1 contains an integer stall location, xi

    第一行:空格分隔的两个整数N和C

    第二行---第N+1行:i+1行指出了xi的位置

    Output

    * Line 1: One integer: the largest minimum distance

    第一行:一个整数,最大的最小值

    Sample Input

    5 3
    1
    2
    8
    4
    9

    Sample Output

    3

    把牛放在1,4,8这样最小距离是3

    HINT

     

    Source

    Gold

    题解:一道经典的二分答案题,对于可行的解的可能范围进行二分求最大合法值,然后再check函数里面采取的是 ( Oleft(N ight) ) 的判断法,最坏情况下将会将整个数列跑一遍,这样一来复杂度为 ( Oleft(Nlog frac{X_N-X_1}{C-1} ight) ) ,于是这样子就A掉了

    实际上更好的办法是在check里面再套一个二分查找数字,实际效果将强于直接跑,复杂度 ( Oleft(Clog N log frac{X_N-X_1}{C-1} ight) )

     1 /**************************************************************
     2     Problem: 1734
     3     User: HansBug
     4     Language: Pascal
     5     Result: Accepted
     6     Time:140 ms
     7     Memory:616 kb
     8 ****************************************************************/
     9  
    10 var
    11    i,j,k,l,m,n,r:longint;
    12    a:array[0..100000] of longint;
    13 procedure sort(l,r:longint);
    14           var i,j,x,y:longint;
    15           begin
    16                i:=l;j:=r;x:=a[(l+r) div 2];
    17                repeat
    18                      while a[i]<x do inc(i);
    19                      while a[j]>x do dec(j);
    20                      if i<=j then
    21                         begin
    22                              y:=a[i];a[i]:=a[j];a[j]:=y;
    23                              inc(i);dec(j);
    24                         end;
    25                until i>j;
    26                if i<r then sort(i,r);
    27                if l<j then sort(l,j);
    28           end;
    29 function check(x:longint):boolean;
    30          var i,j,k,l:longint;
    31          begin
    32               a[0]:=-x-1;l:=0;j:=0;
    33               for i:=1 to n do
    34                   begin
    35                        if (a[i]-a[l])>=x then
    36                           begin
    37                                inc(j);
    38                                if j>=m then exit(true);
    39                                l:=i;
    40                           end;
    41                   end;
    42               exit(false);
    43          end;
    44 begin
    45      readln(n,m);
    46      for i:=1 to n do readln(a[i]);
    47      sort(1,n);
    48      l:=0;r:=(a[n]-a[1]) div (m-1);
    49      while l<r do
    50            begin
    51                 k:=(l+r+1) div 2;
    52                 if check(k) then
    53                    l:=k
    54                 else
    55                     r:=k-1;
    56            end;
    57      writeln(l);
    58      readln;
    59 end.     
  • 相关阅读:
    Python实现杨辉三角
    第8.30节 重写Python __setattr__方法实现属性修改捕获
    转:Cookie详解
    第8.29节 使用MethodType将Python __setattr__定义的实例方法与实例绑定
    第8.28节 Python中使用__setattr__定义实例变量和实例方法
    第8.27节 Python中__getattribute__与property的fget、@property装饰器getter关系深入解析
    第8.26节 重写Python类中的__getattribute__方法实现实例属性访问捕获
    关于open函数文件打开模式的有意思的一个现象
    第8.25节 Python风格的__getattribute__属性访问方法语法释义及使用
    转:关于Python中的lambda,这篇阅读量10万+的文章可能是你见过的最完整的讲解
  • 原文地址:https://www.cnblogs.com/HansBug/p/4409941.html
Copyright © 2011-2022 走看看