zoukankan      html  css  js  c++  java
  • 1684: [Usaco2005 Oct]Close Encounter

    1684: [Usaco2005 Oct]Close Encounter

    Time Limit: 5 Sec  Memory Limit: 64 MB
    Submit: 387  Solved: 181
    [Submit][Status][Discuss]

    Description

    Lacking even a fifth grade education, the cows are having trouble with a fraction problem from their textbook. Please help them. The problem is simple: Given a properly reduced fraction (i.e., the greatest common divisor of the numerator and denominator is 1, so the fraction cannot be further reduced) find the smallest properly reduced fraction with numerator and denominator in the range 1..32,767 that is closest (but not equal) to the given fraction. 找一个分数它最接近给出一个分数. 你要找的分数的值的范围在1..32767

    Input

    * Line 1: Two positive space-separated integers N and D (1 <= N < D <= 32,767), respectively the numerator and denominator of the given fraction

    Output

    * Line 1: Two space-separated integers, respectively the numerator and denominator of the smallest, closest fraction different from the input fraction.

    Sample Input

    2 3

    Sample Output

    21845 32767

    OUTPUT DETAILS:

    21845/32767 = .666676839503.... ~ 0.666666.... = 2/3.

    HINT

     

    Source

    Silver

    题解:感觉很像是NOIP2014普及组的那道题,貌似当时干掉了好多人= =(HansBug:呵呵哒我会说我第一想法是二分答案么,但是显然二分是没有办法控制分母的大小的)

    于是继续脑洞,于是我想到既然分母范围那么小,那么为何不枚举分母呢?然后直接根据原来分数的大致值来估测分子,然后不断打擂台

    (PS:值得注意的是要特判和原分数相同的情况,否则你会输入什么就输出什么的= =,不过敢直接这么枚举还是需要一定脑洞哒)

     1 /**************************************************************
     2     Problem: 1684
     3     User: HansBug
     4     Language: Pascal
     5     Result: Accepted
     6     Time:44 ms
     7     Memory:224 kb
     8 ****************************************************************/
     9  
    10 var
    11    i,j,k,l,m,n,a,b:longint;
    12    ans:double;
    13 procedure check(x,y:longint);
    14           var t:double;
    15           begin
    16                if (x*m)=(y*n) then exit;
    17                t:=abs((x/y)-(n/m));
    18                if t<ans then
    19                   begin
    20                        ans:=t;
    21                        a:=x;
    22                        b:=y;
    23                   end;
    24           end;
    25 begin
    26      readln(n,m);ans:=maxint;;
    27      for j:=1 to 32767 do
    28          begin
    29               i:=trunc((n/m)*j);
    30               check(i,j);
    31               check(i+1,j);
    32          end;
    33      writeln(a,' ',b);
    34      readln;
    35 end.      
  • 相关阅读:
    Installshield Basic msi 禁用控制面板中添加删除应用
    js location.search
    c# 中关于office引用释放 技巧
    Installshield2016 condition
    bat script 点滴
    Installshield 2015 实现检测某安装文件是否存在并运行安装
    (八)基本概念列表
    (七)PM法律法规、文档配置、需求管理知识
    (六)PM项目沟通、风险、采购管理
    (五)PM项目质量管理与人力资源管理
  • 原文地址:https://www.cnblogs.com/HansBug/p/4415801.html
Copyright © 2011-2022 走看看