zoukankan      html  css  js  c++  java
  • 3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line

    Time Limit: 10 Sec  Memory Limit: 128 MB
    Submit: 82  Solved: 49
    [Submit][Status][Discuss]

    Description

    The N (1 <= N <= 20) cows conveniently numbered 1...N are playing 
    yet another one of their crazy games with Farmer John. The cows 
    will arrange themselves in a line and ask Farmer John what their 
    line number is. In return, Farmer John can give them a line number 
    and the cows must rearrange themselves into that line. 
    A line number is assigned by numbering all the permutations of the 
    line in lexicographic order. 

    Consider this example: 
    Farmer John has 5 cows and gives them the line number of 3. 
    The permutations of the line in ascending lexicographic order: 
    1st: 1 2 3 4 5 
    2nd: 1 2 3 5 4 
    3rd: 1 2 4 3 5 
    Therefore, the cows will line themselves in the cow line 1 2 4 3 5. 

    The cows, in return, line themselves in the configuration "1 2 5 3 4" and 
    ask Farmer John what their line number is. 

    Continuing with the list: 
    4th : 1 2 4 5 3 
    5th : 1 2 5 3 4 
    Farmer John can see the answer here is 5 

    Farmer John and the cows would like your help to play their game. 
    They have K (1 <= K <= 10,000) queries that they need help with. 
    Query i has two parts: C_i will be the command, which is either 'P' 
    or 'Q'. 

    If C_i is 'P', then the second part of the query will be one integer 
    A_i (1 <= A_i <= N!), which is a line number. This is Farmer John 
    challenging the cows to line up in the correct cow line. 

    If C_i is 'Q', then the second part of the query will be N distinct 
    integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the 
    cows challenging Farmer John to find their line number. 

    有N头牛,分别用1……N表示,排成一行。 
    将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。 
    例如:有5头牛 
    1st: 1 2 3 4 5 
    2nd: 1 2 3 5 4 
    3rd: 1 2 4 3 5 
    4th : 1 2 4 5 3 
    5th : 1 2 5 3 4 
    …… 
    现在,已知N头牛的排列方式,求这种排列方式的行号。 
    或者已知行号,求牛的排列方式。 
    所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。 
    如果,行号是3,则排列方式为1 2 4 3 5 
    如果,排列方式是 1 2 5 3 4 则行号为5 

    有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。 
    当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。 

    Input

    * Line 1: Two space-separated integers: N and K 
    * Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query. 
    Line 2*i will contain just one character: 'Q' if the cows are lining 
    up and asking Farmer John for their line number or 'P' if Farmer 
    John gives the cows a line number. 

    If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated 
    integers B_ij which represent the cow line. If the line 2*i is 'P', 
    then line 2*i+1 will contain a single integer A_i which is the line 
    number to solve for. 

    第1行:N和K 
    第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。 
    如果Line2*i是P,则Line2*i+1,是一个整数,表示行号; 
    如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

    Output

    * Lines 1..K: Line i will contain the answer to query i. 

    If line 2*i of the input was 'Q', then this line will contain a 
    single integer, which is the line number of the cow line in line 
    2*i+1. 

    If line 2*i of the input was 'P', then this line will contain N 
    space separated integers giving the cow line of the number in line 
    2*i+1. 
    第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

    Sample Input

    5 2
    P
    3
    Q
    1 2 5 3 4

    Sample Output


    1 2 4 3 5
    5

    HINT

     

    Source

    Silver

    题解:这道题嘛。。。一开始想到的是生成法全排列,不过看N<=20,对于O(N!)的算法必挂无疑(生成法神马的感觉立刻让我回到小学的时光啊有木有,事实上小学时用QB跑全排列时N=12就已经需要相当长的时间了)

    本题我在某某地方看到了一个新的很神奇的算法——康托展开(传送门在此,具体算法在此处不再赘述),于是开始瞎搞,一开始Q类问题求出初始序列后还弄了个树状数组进行维护,再看到N<=20时立刻感觉自己膝盖上中了来自USACO的鄙视之箭,于是P类询问我也开始暴力模拟,反正才N<=20,只要不真的瞎写都问题不大的

     1 /**************************************************************
     2     Problem: 3301
     3     User: HansBug
     4     Language: Pascal
     5     Result: Accepted
     6     Time:192 ms
     7     Memory:228 kb
     8 ****************************************************************/
     9  
    10 var
    11    list:array[0..20] of int64;
    12    i,j,k,l,m,n:longint;
    13    a1,a2,a3,a4,a5:int64;
    14    a,b,c,d:array[0..100] of int64;
    15    ch:char;
    16 procedure add(x:longint);
    17           begin
    18                if x=0 then exit;
    19                while x<=n do
    20                      begin
    21                           inc(c[x]);
    22                           inc(x,x and -x);
    23                      end;
    24           end;
    25 function sum(x:longint):int64;
    26          begin
    27               if x=0 then exit(0);
    28               sum:=0;
    29               while x>0 do
    30                     begin
    31                          inc(sum,c[x]);
    32                          dec(x,x and -x)
    33                     end;
    34          end;
    35 begin
    36      list[0]:=1;
    37      for i:=1 to 20 do list[i]:=list[i-1]*i;
    38      readln(n,m);
    39      for i:=1 to m do
    40          begin
    41               readln(ch);
    42               case upcase(ch) of
    43                    'P':begin
    44                             readln(a1);
    45                             a1:=a1-1;
    46                             for j:=1 to n do
    47                                 begin
    48                                      a[j]:=a1 div list[n-j];
    49                                      a1:=a1 mod list[n-j];
    50                                 end;
    51                             fillchar(c,sizeof(c),0);
    52                             for j:=1 to n do
    53                                 begin
    54                                      l:=0;
    55                                      for k:=1 to n do
    56                                          begin
    57                                               if c[k]=1 then continue;
    58                                               if a[j]=l then
    59                                                  begin
    60                                                       d[j]:=k;
    61                                                       c[k]:=1;
    62                                                  end;
    63                                               inc(l);
    64                                          end;
    65                                 end;
    66                             for j:=1 to n do if j<n then write(d[j],' ') else writeln(d[j]);
    67                    end;
    68                    'Q':begin
    69                             for j:=1 to n do read(b[j]);
    70                             readln;a1:=0;
    71                             fillchar(c,sizeof(c),0);
    72                             for j:=1 to n do
    73                                 begin
    74                                      add(b[j]);
    75                                      inc(a1,(b[j]-sum(b[j]))*list[n-j]);
    76                                 end;
    77                             writeln(a1+1);
    78                    end;
    79               end;
    80          end;
    81 end.        
  • 相关阅读:
    【题解】JSOI2009游戏
    【考试记录】4.8 Path (网络流 —— 劲题)
    【考试记录】4.8 Table ( 数论数学 --组合数 & 杨辉三角)
    【题解】HNOI2016树
    【算法】最小乘积生成树 & 最小乘积匹配 (HNOI2014画框)
    【加油!】
    [bzoj4916] 神犇和蒟蒻 [杜教筛]
    [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]
    [luogu3768] 简单的数学题 [杜教筛]
    春季学习记录
  • 原文地址:https://www.cnblogs.com/HansBug/p/4423626.html
Copyright © 2011-2022 走看看