本文持续更新地址:https://haoqchen.site/2018/11/08/arithmetic-progression-recovery/
题目描述
小P写下了一个等差数列,然后小Q将等差数列中的所有偶数都除以2(一直除以2,直到变成奇数为止)。然后小P发现等差数列被改了,现在他要还原出原来的等差数列。如果有多种可能的答案,请输出首项最小的等差数列。
输入描述
第一行一个整数N(4 <= N <= 50),表示等差数列的整数数量。
之后N行,每行一个奇数A[i],依次表示小Q除以2之后得到的奇数列,保证1 <= A[i] <= 1000.
输出描述
N行,每行一个整数,表示小P原来写下的等差数列。
示例
6
1
1
3
1
5
3
代码(没有提交系统,只在本地测试了样例)
#include <iostream>
#include <algorithm>
using namespace std;
typedef short int T;
struct ARI_PRO{
T begin;
T step;
};
bool is_double(T a, T b)
{
while (a < b){
a = a << 1;
}
if (a == b)
return true;
return false;
}
ARI_PRO get_ari_pro(T* A, T N)
{
int i = 0;
int temp = 0;
ARI_PRO result;
T step = A[1] - A[0];
for (i = 2; i < N; ++i){//begin with odd, step by even
if ((A[i] - A[i - 1]) != step)
break;
}
if (i == N){
result.begin = A[0];
result.step = step;
return result;
}
temp = A[0];
step = (A[2] - A[0]) / 2;//begin with odd, step by odd
for (i = 1; i < N; ++i){
temp = temp + step;
if ((i & 1) && !is_double(A[i], temp))
break;
else if ((!(i & 1)) && A[i] != temp)
break;
}
if (i == N){
result.begin = A[0];
result.step = step;
return result;
}
step = (A[3] - A[1]) / 2;//begin with even, step by odd
temp = A[1] - step;
for (i = 0; i < N; ++i){
if ((!(i & 1)) && !is_double(A[i], temp))
break;
else if ((i & 1) && A[i] != temp)
break;
temp = temp + step;
}
if (i == N){
result.begin = A[0];
result.step = step;
return result;
}
}
int main(int argc, char** argv)
{
T N;
cin >> N;
if (N > 50 || N < 4)
return 0;
T* A = new T[N];
T temp;
for (int i = 0; i < N; ++i)
cin >> A[i];
ARI_PRO result = get_ari_pro(A, N);
temp = result.begin;
for (int i = 0; i < N; ++i){
cout << temp << endl;
temp += result.step;
}
delete[] A;
return 0;
}
思路
很多人可能会想用动态规划去求解。。。这个复杂度是指数级别的~~~~
其实仔细分析一下可以知道,实际只有以下四种情况
startstep | odd(奇数) | even(偶数) |
odd(奇数) | (2)第0,2个数没变,作差/2就可以求出step,然后构建正确的等差数列。对奇数数列进行遍历,如果是双数的索引(从0开始)则判断是否相等,如是奇数索引则判断奇数数列中的数一直乘以2能否等于正确的等差数列。 | (1)原来就所有数都是奇数,所以整个数列并没有改变,直接判断是否正确即可 |
even(偶数) | (3)第1,3个数没有变,作差/2即可求出step。然后剩下步奏与(2)相似 | 其实偶偶的话是会退化为剩下三种的,所以不必考虑 |
考虑到如果有多个结果,输出首项最小的,所以安排了(1)(2)(3)的判断顺序。理论上负责度还是n*K,K很小?
不过只通过了测试用例,没上传到系统检验