zoukankan      html  css  js  c++  java
  • tensorflow学习之(九)classification 分类问题之分类手写数字0-9

    #classification 分类问题
    #例子 分类手写数字0-9
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    #数据包,如果没有自动下载 number 0 to 9 data
    mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
    
    # 定义一个神经层
    def add_layer(inputs, in_size, out_size, activation_function=None):
        #add one more layer and return the output of the layer
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    
    #用测试集来评估神经网络的准确度
    def computer_accuracy(v_xs,v_ys):
        global prediction
        y_pre = sess.run(prediction,feed_dict={xs:v_xs})
        #tf.argmax()返回最大数值的下标
        #tf.equal(A, B)是对比这两个矩阵或者向量的相等的元素,如果是相等的那就返回True,反正返回False,返回的值的矩阵维度和A是一样的
        '''
        tf.argmax(input, axis=None, name=None, dimension=None)
        此函数是对矩阵按行或列计算最大值    
        参数
        input:输入Tensor
        axis:0表示按列,1表示按行
        name:名称
        dimension:和axis功能一样,默认axis取值优先。新加的字段
        返回:Tensor  一般是行或列的最大值下标向量
        '''
        '''
        A = [[1,3,4,5,6]]
        B = [[1,3,4,3,2]] 
        with tf.Session() as sess:
        print(sess.run(tf.equal(A, B)))
        输出:[[ True  True  True False False]]
        '''
        correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))#tf.argmax(y_pre,1)表示预测出的值,tf.argmax(v_ys,1)表示实际值
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#将correct_prediction的数据格式转换为tf.float32
        result = sess.run(accuracy,feed_dict={xs: v_xs, ys: v_ys})
        return result
    
    
    #define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 784])  # none表示无论给多少个例子都行,784=28*28
    ys = tf.placeholder(tf.float32, [None, 10])  #表示10个需要识别的数字
    
    # add output layer
    prediction = add_layer(xs, 784, 10 , activation_function=tf.nn.softmax)
    
    #the error between prediction and real data
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1])) #loss function
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    #cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=xs,labels=ys))
    
    sess = tf.Session()
    #important step
    sess.run(tf.initialize_all_variables())
    
    
    for i in range(1000):
        batch_xs,batch_ys = mnist.train.next_batch(100) #由于计算能力有限,每次只提取数据集的一部分
        sess.run(train_step,feed_dict={xs: batch_xs, ys: batch_ys})
        if i % 50 == 0:
            #打印计算准确度
            print(computer_accuracy(mnist.test.images,mnist.test.labels))
  • 相关阅读:
    Sql 复习(1)
    记录一次git issue
    JWT自校验框架
    分布式事务分布式锁的常用解决方式
    SpringBoot开发文档
    SpringCloud的使用以及五大核心组件
    SpringMVC
    关于开发中使用AOP的坑
    SpringCloud使用feign远程调用服务注入映射接口失败问题
    springBoot使用Restful跳转路径回显异常问题
  • 原文地址:https://www.cnblogs.com/Harriett-Lin/p/9593180.html
Copyright © 2011-2022 走看看