zoukankan      html  css  js  c++  java
  • HDU 4587 TWO NODES 枚举+割点

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587

    TWO NODES

    Time Limit: 24000/12000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 1448    Accepted Submission(s): 441


    Problem Description
    Suppose that G is an undirected graph, and the value of stab is defined as follows:

    Among the expression,G-i, -j is the remainder after removing node i, node j and all edges that are directly relevant to the previous two nodes. cntCompent is the number of connected components of X independently.
    Thus, given a certain undirected graph G, you are supposed to calculating the value of stab.
     
    Input
    The input will contain the description of several graphs. For each graph, the description consist of an integer N for the number of nodes, an integer M for the number of edges, and M pairs of integers for edges (3<=N,M<=5000).
    Please note that the endpoints of edge is marked in the range of [0,N-1], and input cases ends with EOF.
     
    Output
    For each graph in the input, you should output the value of stab.
     
    Sample Input
    4 5 0 1 1 2 2 3 3 0 0 2
     
    Sample Output
    2
     
    Source
     
    Recommend
    zhuyuanchen520

     题意

    给你个图,问你去掉两个点之后能有最多多少连通块。

    题解

    先枚举其中一个点,然后在剩下的点中求割点,Tarjan的时候统计一下每个割点分割几个连通块,取个最大的割点,然后再dfs一次求连通块个数。

    代码

    #include<cstdio>
    #include<iostream>
    #include<vector>
    #include<cstring>
    #include<algorithm>
    #define MAX_N 5555
    using namespace std;
    
    vector<int> G[MAX_N];
    bool vis[MAX_N];
    int dfn[MAX_N],low[MAX_N],ind=0;
    
    int cut[MAX_N];
    
    int node;
    
    void Tarjan(int u,int p){
        int child=0;
        dfn[u]=low[u]=++ind;
        vis[u]=1;
        for(int i=0;i<G[u].size();i++){
            int v=G[u][i];
            if(v==p||v==node)continue;
            if(!vis[v]){
                Tarjan(v,u);
                low[u]=min(low[v],low[u]);
                child++;
                if((p==-1&&child>1)||(p!=-1&&low[v]>=dfn[u]))
                    cut[u]++;
            }
            else
                low[u]=min(dfn[v],low[u]);
        }
    }
    
    int n,m;
    
    void init(){
        for(int i=0;i<=n;i++)G[i].clear();
        ind=0;
        memset(vis,0,sizeof(vis));
        memset(cut,0,sizeof(cut));
    }
    
    bool used[MAX_N];
    int cu;
    void dfs(int u,int p){
        if(u==p||used[u]||u==node||u==cu)return;
        used[u]=1;
        for(int i=0;i<G[u].size();i++)dfs(G[u][i],u);
    }
    
    int main(){
        while(scanf("%d%d",&n,&m)==2){
            int stab=1;
            init();
            int u,v;
            for(int i=0;i<m;i++) {
                scanf("%d%d", &u, &v);
                G[u].push_back(v);
                G[v].push_back(u);
            }
            for(int i=0;i<n;i++){
                node=i;
                memset(vis,0,sizeof(vis));
                ind=0;
                memset(cut,0,sizeof(cut));
                for(int j=0;j<n;j++)
                    if((!vis[j])&&j!=node)
                        Tarjan(j,-1);
                int maxC=0;
                for(int j=0;j<n;j++)
                    if(j!=node&&cut[j]>=maxC){
                        cu=j;
                        maxC=cut[j];
                    }
                int ans=0;
                memset(used,0,sizeof(used));
                for(int j=0;j<n;j++)
                    if((!used[j])&&j!=node&&j!=cu){
                        dfs(j,-1);
                        ans++;
                    }
                stab=max(stab,ans);
            }
            printf("%d
    ",stab);
        }
    
        return 0;
    }
  • 相关阅读:
    Django ——Timezone 处理
    orm
    MySql系列之初识
    python并发编程之IO模型
    并发编程之协程
    GIL解释锁及进程池和线程池
    线程的互斥锁、递归锁及信号量
    守护、互斥锁、IPC和生产者消费者模型
    并发编程基础(进程)
    网络编程
  • 原文地址:https://www.cnblogs.com/HarryGuo2012/p/4722798.html
Copyright © 2011-2022 走看看