A * B Problem Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 25361 Accepted Submission(s): 6524
Problem Description
Calculate A * B.
Input
Each line will contain two integers A and B. Process to end of file.
Note: the length of each integer will not exceed 50000.
Note: the length of each integer will not exceed 50000.
Output
For each case, output A * B in one line.
Sample Input
1
2
1000
2
Sample Output
2
2000
Author
DOOM III
FFT入门题
#include<iostream> #include<cstring> #include<cstdio> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; const int maxn=2e5+12; const double pi=acos(-1); struct complex { double x,i; complex(){} complex(double a,double b) {x=a;i=b;} }A[maxn],B[maxn]; complex operator + (complex a,complex b) {return complex(a.x+b.x,a.i+b.i);} complex operator - (complex a,complex b) {return complex(a.x-b.x,a.i-b.i);} complex operator * (complex a,complex b) {return complex(a.x*b.x-a.i*b.i,a.x*b.i+a.i*b.x);} int n; int rev[maxn]; void FFT(complex *a,int t) { for(int i=0;i<n;i++) if(rev[i]>i) swap(a[i],a[rev[i]]);//交换 for(int i=1;i<n;i<<=1)//当前块的长度 { complex wn(cos(2*pi/(i<<1)),t*sin(2*pi/(i<<1)));//wn for(int j=0;j<n;j+=(i<<1))//处于哪一块 { complex w(1,0),t0,t1; for(int k=0;k<i;k++) //块上的位置 { t0=a[j+k];t1=w*a[j+k+i];//蝴蝶交换 a[j+k]=t0+t1; a[j+k+i]=t0-t1; w=w*wn; } } } } int sum[maxn]; int main() { freopen("a.in","r",stdin); char s1[maxn],s2[maxn]; while(scanf("%s%s",s1,s2)!=EOF) { int len1=strlen(s1),len2=strlen(s2); int len=1; while(len<len1*2||len<len2*2) len<<=1;//两数之积不超过最大数次数的2倍 for(int i=0;i<len1;i++) A[i]=complex(s1[len1-i-1]-'0',0); for(int i=len1;i<len;i++) A[i]=complex(0,0); for(int i=0;i<len2;i++) B[i]=complex(s2[len2-i-1]-'0',0); for(int i=len2;i<len;i++) B[i]=complex(0,0); n=len; rev[0]=0; int L=0;// for(int i=1;i<len;i<<=1) L++; for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));//交换对象 FFT(A,1);FFT(B,1);//DFT for(int i=0;i<len;i++) A[i]=A[i]*B[i];//点积相乘 FFT(A,-1);//逆DFT for(int i=0;i<len;i++) sum[i]=(int)(A[i].x/len+0.5);//减少误差 逆DFT需要多除以个len for(int i=0;i<len;i++) { sum[i+1]+=sum[i]/10; sum[i]%=10; } len=len1+len2-1; while(sum[len]<=0&&len) len--; for(int i=len;i>=0;i--) printf("%d",sum[i]); printf(" "); } return 0; }