zoukankan      html  css  js  c++  java
  • YOLO v3理解(一)

    首先搞清yolo检测网络的输入输出

    最终输入的是416*416的三通道图像,输出的是三个尺度特征图上的预测张量。

    第一尺度:13*13,对此特征图使用最大的三个anchor box,最终得到13*13*3*(4+1+num_class)维度的张量。此尺度的特征图对原图来说有最小的分辨率,这个anchor尺寸适宜检测大物体。特征图每个像素点感受野为32*32,即原图片空间划分的每个grid的尺寸为32*32

    第二尺度:26*26,此尺度由第一尺度featuremap上采样并融合而来,对此特征图使用中间大的三个anchor box,最终得到26*26*3*(4+1+num_class)维度的张量。此尺度的特征图对原图来说有中间大小的分辨率,这个尺度anchor适宜检测中等尺度的物体。特征图每个像素点感受野为16*16,即原图片空间划分的每个grid的尺寸为16*16

    第三尺度:52*52,此尺度由第二尺度featuremap上采样并融合而来,对此特征图使用最小的三个anchor box,最终得到52*52*3*(4+1+num_class)维度的张量。此尺度的特征图对原图来说有最大分辨率,此尺度anchor最适宜检测小物体。特枕图每个像素点感受野为8*8,即原图片空间划分的每个grid的尺寸为8*8。

    每一个pred_box都是(4+1+num_class)维度,4通过struct box  box实现。完整的pred_box张量用结构体detection实现的。

    得到的所有的bouding box先用物体得分obj_score = 0.5粗过滤,然后剩下的再用类别置信度和IOU阈值做。

    通过找到最大类别概率大于阈值的anchor,予以显示preb_box。且如果有其它分类概率,大于阈值,那么也会在box旁打印概率。

    (4+Confidence+C):

        Confidence =(是目标的概率P)*(框到了目标多少部分IOU)。

        C是条件类别概率:已知是目标的前提下,属于某类别的概率。

    图片空间分三个尺度划分Grid:(三种划分方法,每种划分其grid内都有3个anchor)

      s = 32*32

      s = 16*16

      s =  8 * 8

    每个grid放置3个尺度的anchor box

    如何确定物体被哪个区域的anchor预测?物体中心落在哪个grid里,就用这个gird里对应的3个anchor负责预测。

    如何确定哪个anchor负责预测目标?这9个anchor与GT_box交并比最大的那个anchor负责预测。

    每个格子上的每个anchor都是一个回归器,所有这些回归器是独立的。

    https://www.jianshu.com/p/86b8208f634f

  • 相关阅读:
    RunLoop详解
    NSURLConnection基本用法(苹果原生)
    NSThread 基本使用
    NSOperation/NSOperationQueue详细使用介绍
    JSON解析
    XML解析
    GCD详细用法
    [Java]手动编译Java
    [Selenium] Grid 介绍
    [SoapUI] 循环遍历某个Test Case下的所有Test Step,将Cookie传递给这些Test Step
  • 原文地址:https://www.cnblogs.com/Henry-ZHAO/p/12725202.html
Copyright © 2011-2022 走看看