zoukankan      html  css  js  c++  java
  • 椭圆曲线算数原理与实现

    椭圆曲线算术理论基础




    编程实现ECC模N意义下的点加法

    首先分别是计算整数x、小数x对于模数N的乘法逆元的函数:

    # based on extended Euclidean algorithm
    # calc : x^(-1) mod N | x is int type 
    # show=True means print calculate message
    def IntModInverse(x, N, show = True):
        if gcd(N,x) != 1:
            return None
        if x == 1:
            return 1
        A1, A2, A3 = 1, 0, N
        B1, B2, B3 = 0, 1, x
        if show:
            print('-'*54)
            print("|{:^5}	{:^5}	{:^5}	{:^5}	{:^5}	{:^5}	{:^5}|".format("Q","A1","A2","A3","B1","B2","B3"))
            print("|{:^5}	{:^5}	{:^5}	{:^5}	{:^5}	{:^5}	{:^5}|".format("-", A1, A2, A3, B1, B2, B3))
        while True:
            Q = A3//B3
            B1,B2,B3,A1,A2,A3 = (A1-Q*B1),(A2-Q*B2),(A3-Q*B3),B1,B2,B3
            if show:
                print("|{:^5}	{:^5}	{:^5}	{:^5}	{:^5}	{:^5}	{:^5}|".format(Q, A1, A2, A3, B1, B2, B3))
            if B3 == 0:
                return None
            elif B3 == 1:
                break
        if show:
            print("-"*54)
        return B2 % N
    
    # x is float type
    def FloatModReverse(x, N, self = False):
        i = 1
        while True:
            if i*x % N == 1:
                break
            i += 1
        i %= N
        if not self: # 返回小数x关于模数N的逆元
            return i
        else:        # 返回小数x关于N的等价整数
            return IntModInverse(i, N, False)
    

    比如计算1.5关于23的整数等价模,易知1.5 *(2/3)= 1 mod 23,而36 *(2/3)= 24 = 1 mod 23, 因此1.5 = 36 = 13 mod 23 。
    其次是ECC点加的计算公式,得到的delta可能是小数,需要用上述定义的FloatModReverse函数。

    # y^2 mod q == (x^3 + ax + b) mod q 
    def ECC_Add(point1, point2, q, a, b):
        (x1, y1) = point1
        (x2, y2) = point2 
        if point1 == point2:
            delta = (3 * pow(x1, 2) + a)/(2 * y1)
            delta = FloatModReverse(delta, q, True) 
        else:
            delta = (y2 - y1)/(x2 - x1)
            delta = FloatModReverse(delta, q, True) 
        x3 = (pow(delta, 2) - x1 - x2) % q 
        y3 = (delta * (x1 - x3) - y1) % q
        return (x3, y3)
    

    测试

    G = (0, 1)
    x = (17, 20)
    print(ECC_Add(G, x, 23, 1, 1))
    

    实数域上的ECC点加法,就是去除模N的限制,点坐标包含浮点数

    # y^2 == (x^3 + ax + b)
    def ECC_Add2(point1, point2, a, b):
        (x1, y1) = point1
        (x2, y2) = point2 
        if point1 == point2:
            delta = (3 * pow(x1, 2) + a)/(2 * y1)
            # print("delta:", delta)
        else:
            delta = (y2 - y1)/(x2 - x1)
            # print("delta:", delta)
        x3 = pow(delta, 2) - x1 - x2
        y3 = delta * (x1 - x3) - y1
        return (x3, y3)
    G1 = (-3.5, 9.5)
    G2 = (-2.5, 8.5)
    print(ECC_Add2(G1, G2,a = -36, b = 0))
    

    效果

    进一步,定义ECC模N意义下的点乘法

    def ECC_Mul(point, n, q, a, b, show = True):
        (x, y) = point
        res = point
        for i in range(2, n+1):
            res = ECC_Add(point, res, q, a, b)
            if show:
                print("{} * G = {}".format(i, res))
        return res
    
    G = (2, 7)
    ECC_Mul(G, 12, q = 11, a = 1, b = 6)
    

    返回结果点坐标,开启show会把计算过程全部展示出来(可继续优化)。

    效果

    其他参考

    https://www.cnblogs.com/Kalafinaian/p/7392505.html
    https://www.jianshu.com/p/96bbe37ce14d

  • 相关阅读:
    ECNU-2574 Principles of Compiler
    C++调用C#生成的DLL文件的各种问题
    EOJ-1708//POJ3334
    Linux---弹球游戏
    dotfiles管理
    js基础的知识整理
    关于css的一些知识点整理
    HTML5 aria- and role
    JS获取非行间样式
    Javascript中的数组去重-indexof方法
  • 原文地址:https://www.cnblogs.com/Higgerw/p/14155795.html
Copyright © 2011-2022 走看看