zoukankan      html  css  js  c++  java
  • 机器学习基础

    1. 机器学习定义

    机器学习是一门能够让系统从数据中学习的计算机科学。

    2. 机器学习在哪些问题上表现突出?

    机器学习非常有利于:不存在已知算法解决方案的复杂问题,需要大量手动调整或是规则列表超长的问题,创建可以适用环境波动的系统,以及帮助人类学习(比如数据挖掘)。

    3. 什么是被标记的训练数据集?

    被标记的训练集是指包含每个实例所期望的解决方案的训练集。

    4. 最常见的监督式学习任务是什么?

    最常见的两个监督式学习任务是分类和回归

    5. 模型参数与学习算法的超参数的区别?

    模型参数有一个或者多个,这些参数决定了模型对新的给定实例会做出怎样的预测(比如,线性模型的斜率)。学习算法试图找到这些参数的最佳值,使得该模型能够很好的泛化至新的实例。超参数是学习算法本身的参数,不是模型的参数(比如,要应用的正则化数量)。

    6. 什么是测试集,为什么要使用测试集?

    在模型启动至生产环境之前,使用测试集来估算模型在新实例上的泛化能力。

    7. 什么是交叉验证?它为什么比验证集更好?

    通过交叉验证技术,可以不需要单独的验证集实现模型比较(用于模型选择和调整超参数)。这节省了宝贵的训练数据。

    8. 如果使用测试集调整超参数会出现什么问题?

    如果使用测试集来调整超参数,会有过度拟合测试集的风险,最后测量的泛化误差会过于乐观(最后启动的模型性能比预期对的要差)。

  • 相关阅读:
    计算机术语
    【转】 物理内存和线性空间
    windows Visual Studio 上安装 CUDA【转载】
    windows Notepad++ 上配置 vs 编译器 , 编译并运行
    单列模式 [转载]
    Java Swing布局管理器GridBagLayout的使用示例 [转]
    五年java工作应具备的技能
    三年java软件工程师应有的技技能
    京东面试题 Java相关
    京东笔试题总结
  • 原文地址:https://www.cnblogs.com/Hijack-you/p/11325254.html
Copyright © 2011-2022 走看看