zoukankan      html  css  js  c++  java
  • POJ 1745 Divisibility【DP】

    Language:
    Divisibility
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 8396   Accepted: 2909

    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible

    题意:给出n个数,在n个数中添加+,-号使得能整除k.

    思路:由于状态与前一个数有关,且和第i个数+或-有关。dp[i][j]表示第i个数余数为j时是否为真,dp[i][j-a[i]%m]=dp[i-1][j], dp[i][j+a[i]%m]=dp[i-1][j];判断dp[m][0]是否为真即可,初始条件是dp[1][a[1]]=1;但是注意一点下标不能为负数为此+k*n是等价的。

    代码如下:

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    using namespace std;
    int dp[10005][105], a[10005];
    int main()
    {
    	int i, j, k, n;
    	while(scanf("%d%d", &n, &k)!=EOF)
    	{
    		memset(dp, 0, sizeof(dp));
    		memset(a, 0, sizeof(a));
    		for(i=1; i<=n; i++)
    		{
    			scanf("%d", &a[i]);
    			a[i]%=k;
    		}
    		while(a[1]<0)
    			a[1]+=k; 
    		dp[1][a[1]%k]=1; 
    		for(i=2; i<=n; i++)
    			 for(j=0; j<=k; j++)
    			 	if(dp[i-1][j])
    				{
    					int aa=j-a[i], bb=j+a[i]; 
    					while(aa<0)
    						aa+=k;
    					while(bb<0)
    						bb+=k; 
    					dp[i][aa%k]=1, dp[i][bb%k]=1;
    				} 
    		if(dp[n][0]==1)
    			printf("Divisible\n");
    		else
    			printf("Not divisible\n");
    	}
    } 

     

  • 相关阅读:
    具体讲解有关“DB2“数据库的一些小材干1
    适用手段 Ubuntu Linux 8.04设置与优化2
    如何管理DB2数据库代码页不兼容的成效
    具体解说有关“DB2“数据库的一些小本领3
    深化分析DB2数据库运用体系的性能优化3
    实例讲解如安在DB2 UDB中正确的监控弃世锁2
    阅历总结:运用IBM DB2数据库的详细事变
    实例讲授如何在DB2 UDB中正确的监控死锁3
    DB2数据库在AIX上若何卸载并重新安顿
    轻松处置DB2创设存储历程时碰着的错误
  • 原文地址:https://www.cnblogs.com/Hilda/p/2616816.html
Copyright © 2011-2022 走看看