zoukankan      html  css  js  c++  java
  • POJ 1745 Divisibility【DP】

    Language:
    Divisibility
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 8396   Accepted: 2909

    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible

    题意:给出n个数,在n个数中添加+,-号使得能整除k.

    思路:由于状态与前一个数有关,且和第i个数+或-有关。dp[i][j]表示第i个数余数为j时是否为真,dp[i][j-a[i]%m]=dp[i-1][j], dp[i][j+a[i]%m]=dp[i-1][j];判断dp[m][0]是否为真即可,初始条件是dp[1][a[1]]=1;但是注意一点下标不能为负数为此+k*n是等价的。

    代码如下:

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    using namespace std;
    int dp[10005][105], a[10005];
    int main()
    {
    	int i, j, k, n;
    	while(scanf("%d%d", &n, &k)!=EOF)
    	{
    		memset(dp, 0, sizeof(dp));
    		memset(a, 0, sizeof(a));
    		for(i=1; i<=n; i++)
    		{
    			scanf("%d", &a[i]);
    			a[i]%=k;
    		}
    		while(a[1]<0)
    			a[1]+=k; 
    		dp[1][a[1]%k]=1; 
    		for(i=2; i<=n; i++)
    			 for(j=0; j<=k; j++)
    			 	if(dp[i-1][j])
    				{
    					int aa=j-a[i], bb=j+a[i]; 
    					while(aa<0)
    						aa+=k;
    					while(bb<0)
    						bb+=k; 
    					dp[i][aa%k]=1, dp[i][bb%k]=1;
    				} 
    		if(dp[n][0]==1)
    			printf("Divisible\n");
    		else
    			printf("Not divisible\n");
    	}
    } 

     

  • 相关阅读:
    [你必须知道的.NET]第二十五回:认识元数据和IL(中)
    [技术速递]体验微软开源范例Oxite
    一本去繁存精的设计书《C# 3.0设计模式》
    [你必须知道的.NET]第二十四回:认识元数据和IL(上)
    泛型KMP算法
    实现语音视频录制(demo源码)
    AutoResetEvent 的诡异行为
    调用非托管dll常出现的bug及解决办法
    如何实现离线文件?
    广播与P2P通道(上) 问题与方案
  • 原文地址:https://www.cnblogs.com/Hilda/p/2616816.html
Copyright © 2011-2022 走看看